FASTR Documentation
Release 3.0.0

Fastr contributors

Mar 05, 2019

Contents

1 FASTR Documentation

1.1

1.2

1.3

1.4

1.5

Introduction

1.1.1 Philosophy

1.1.2 System overview
Quick start guide

1.2.1 Installation

1.2.2 Configuration
1.2.3

1.2.4 Running a Network
User Manual

1.3.1

1.3.2

1.33

1.34

1.3.5

1.3.6

1.3.7

1.3.8 Debugging

1.3.9 Naming Convention
1.3.10 Provenance
Command Line Tools
1.4.1

1.4.2

1.4.3 fastr execute
1.4.4 fastr extract_argparse
1.4.5 fastr provenance
1.4.6

1.4.7

1.4.8

1.49 fastr source
1.4.10

1.4.11

1.4.12 fastr upgrade
1.4.13

1.4.14 fastr webapp

Resource File Formats

fastrcat
fastrdump oL oL

fastrpylint.
fastrrun L. L L
fastrsink

fastrtest
fastrtrace

fastrverify

Creating a simple network

Tools
Network
DataFlow
DataTypes
Execution
IOPlugins
Secrets

NN W W W W

1.5.1 Configfile o e e e e e e e e e

1.5.2 Tool desCription v v v v i i i i e e e e e e e e e e e e e e e e e e e
1.6 Resource Reference e
1.6.1 CollectorPlugin Reference
1.6.2 ExecutionPlugin Reference
1.6.3 FlowPlugin Reference
1.6.4 IOPluginReference e e e e e
1.6.5 Interface Reference
1.6.6 ReportingPlugin Reference oo o
1.6.7 TargetReference e e e
1.7 Development and Design Documentation oo
1.7.1 Sample flowin Fastr e e e
1.7.2 Network Execution
L7300 SeCrets. . .. o oo o i i e e e
1.8 Changelog e e e e e e
1.8.1 3.0.0-2019-03-05 e e e
1.8.2 2.1.2-2018-10-24 L e
1.8.3 2.1.1-2018-00-29 e e
1.8.4 2.1.0-2018-04-13 e
1.8.5 2.0.1-2017-10-19 e
1.8.6 2.0.0-2017-09-28 e e e e e e e
1.8.7 1.22-2017-08-24 o e e e
1.8.8 1.2.1-2017-04-04 o o e e
1.8.9 1.2.0-2017-03-15 . . . o o e e e
1.8.10 1.1.2-2016-12-22 e e e
L8111 111 -2016-12-22 o e e e e e e e e e e e e
1.8.12 1.1.0-2016-12-08 e e e e e
FASTR User reference
2.1 FastrUser Reference o . . o e

FASTR Developer Module reference

3.1

fastr Package e
3.1.1 fastrPackage
3.1.2 exceptionsModule e e e
3.1.3 wversionModule e e e
3.1.4 Subpackages e e e e e

4 Indices and tables

Python Module Index

67
67

75
75
75
76
83
84

253

255

FASTR Documentation, Release 3.0.0

FASTR is a framework that helps creating workflows of different tools. The workflows created in FASTR are auto-
matically enhanced with flexible data input/output, execution options (local, cluster, etc) and solid provenance.

We chose to create tools by creating wrappers around executables and connecting everything with Python.

Fastr is open-source (licensed under the Apache 2.0 license) and hosted on bitbucket at https://bitbucket.org/bigr_
erasmusmc/fastr

For support, go to https://groups.google.com/d/forum/fastr-users
To get yourself a copy, see the Installation

The official documentation can be found at fastr.readthedocs.io
The Fastr workflow system is presented in the following article:

Hakim Achterberg, Marcel Koek, and Wiro Niessen. “Fastr: a workflow engine for advanced data flows
in medical image analysis.” Frontiers in ICT 3 (2016): 15.

Fastr is made possible by contributions from the following people: Hakim Achterberg, Marcel Koek, Adriaan Versteeg,
Thomas Phil, Mattias Hansson, Baldur van Lew, Marcel Zwiers, and Coert Metz

Contents 1

https://bitbucket.org/bigr_erasmusmc/fastr
https://bitbucket.org/bigr_erasmusmc/fastr
https://groups.google.com/d/forum/fastr-users
http://fastr.readthedocs.io
http://journal.frontiersin.org/article/10.3389/fict.2016.00015/full
http://journal.frontiersin.org/article/10.3389/fict.2016.00015/full

FASTR Documentation, Release 3.0.0

2 Contents

CHAPTER 1

FASTR Documentation

1.1 Introduction

Fastr is a system for creating workflows for automated processing of large scale data. A processing workflow might
also be called a processing pipeline, however we feel that a pipeline suggests a linear flow of data. Fastr is designed to
handle complex flows of data, so we prefer to use the term network. We see the workflow as a network of processing
tools, through which the data will flow.

The original authors work in a medical image analysis group at Erasmus MC. They often had to run analysis that used
multiple programs written in different languages. Every time a experiment was set up, the programs had to be glued
together by scripts (often in bash or python).

At some point the authors got fed up by doing these things again and again, and so decided to create a flexible, powerful
scripting base to easily create these scripts. The idea evolved to a framework in which the building blocks could be
defined in XML and the networks could be constructed in very simple scripts (similar to creating a GUI).

1.1.1 Philosophy

Researchers spend a lot of time processing data. In image analysis, this often includes using multiple tools in succes-
sion and feeding the output of one tool to the next. A significant amount of time is spent either executing these tools
by hand or writing scripts to automate this process. This process is time consuming and error-prone. Considering all
these tasks are very similar, we wanted to write one elaborate framework that makes it easy to create pipelines, reduces
the risk of errors, generates extensive logs, and guarantees reproducibility.

The Fastr framework is applicable to multiple levels of usage: from a single researcher who wants to design a process-
ing pipeline and needs to get reproducible results for publishing; to applying a consolidated image processing pipeline
to a large population imaging study. On all levels of application the pipeline provenance and managed execution of
the pipeline enables you to get reliable results.

1.1.2 System overview

There are a few key requirements for the design of the system:

FASTR Documentation, Release 3.0.0

* Any tool that your computer can run using the command line (without user interaction) should be usable by the
system without modifying the tool.

* The creation of a workflow should be simple, conceptual and require no real programming.

* Networks, once created, should be usable by anyone like a simple program. All processing should be done

automatically.

» All processing of the network should be logged extensively, allowing for complete reproducibility of the system
(guaranteeing data provenance).

Using these requirements we define a few key elements in our system:

* A fastr.Tool is a definition of any program that can be used as part of a pipeline (e.g. a segmentation tool)

* A fastr.Node is a single operational step in the workflow. This represents the execution of a fastr.Tool.

e A fastr.Link indicates how the data flows between nodes.

* A fastr.Network is an object containing a collection of fastr.Node and fastr.Link that form a

workflow.

With these building blocks, the creation of a pipeline will boil down to just specifying the steps in the pipeline and the
flow of the data between them. For example a simple neuro-imaging pipeline could look like:

fixed img

output

sink image

input

moving_img elastix
output fixed
moving directory
param_file parameters -
sink trans
output fixedMask :
. transform » input
movingMask
initial Transform
priority log transformix
threads transform directory
mput_1mage output_image
input_points .
— output_points
detjac
- output_jac
Jacmat P
priority output_jacmat
threads log

Fig. 1.1: A simple workflow that registers two images and uses the resulting transform to resample the moving image.

In Fastr this translates to:

* Create a fastr.Network for your pipeline

e Create a fastr.SourceNode for the fixed image

Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

* Create a fastr.SourceNode for the moving image

* Create a fastr.SourceNode for the registration parameters

* Create a fastr.Node for the registration (in this case elastix)

* Create a fastr.Node for the resampling of the image (in this case transformix)

* Create a fastr.SinkNode to save the transformations

* Create a fastr.SinkNode to save the transformed images

e fastr.Link the output of the fixed image source node to the fixed image input of the registration node

e fastr.Link the output of the moving image source node to the moving image input of the registration node

e fastr.Link the output of the registration parameters source node to the registration parameters input of the
registration node

e fastr.Link the output transform of the registration node to the transform input of the resampling node
e fastr.Link the output transform of the registration node to the input of transformation SinkNode

e fastr.Link the output image of the resampling node to the input of image SinkNode

* Run the fastr.Network for subjects X

This might seem like a lot of work for a registration, but the Fastr framework manages all other things, executes the
pipeline and builds a complete paper trail of all executed operations. The execution can be on any of the supported
execution environments (local, cluster, etc). The data can be imported from and exported to any of the supported data
connections (file, XNAT, etc). It is also important to keep in mind that this is a simple example, but for more complex
pipelines, managing the workflow with Fastr will be easier and less error-prone than writing your own scripts.

1.2 Quick start guide

This manual will show users how to install Fastr, configure Fastr, construct and run simple networks, and add tool
definitions.

1.2.1 Installation

You can install Fastr either using pip, or from the source code.

Installing via pip

You can simply install fastr using pip:

pip install fastr

Note: You might want to consider installing fastr in a virtualenv

Installing from source code

To install from source code, use Mercurial via the command-line:

1.2. Quick start guide 5

http://docs.python-guide.org/en/latest/dev/virtualenvs/

FASTR Documentation, Release 3.0.0

hg clone https://<yourusername>@bitbucket.org/bigr_erasmusmc/fastr # for http
hg clone ssh://hg@bitbucket.org/bigr_erasmusmc/fastr # for ssh

If you prefer a GUI you can try TortoiseHG (Windows, Linux and Mac OS X) or SourceTree (Windows and Mac OS
X). The address of the repository is (given for both http and ssh):

https://<yourusername>@bitbucket.org/bigr_erasmusmc/fastr
ssh://hg@bitbucket.org/bigr_erasmusmc/fastr

To install to your current Python environment, run:

cd fastr/
pip install

This installs the scripts and packages in the default system folders. For windows this is the python site-packages
directory for the fastr python library and Scripts directory for the executable scripts. For Ubuntu this is in the
/usr/local/lib/python2.7/dist-packages/ and /usr/local/bin/ respectively.

Note: If you want to develop fastr, you might want to use pip install -e . to getan editable install

Note: You might want to consider installing fastr in a virtualenv

Note:

* On windows python and the Scripts directory are not on the system PATH by default. You can add these
by going to System —-> Advanced Options —-> Environment variables.

* On mac you need the Xcode Command Line Tools. These can be installed using the command xcode-select
——install.

1.2.2 Configuration

Fastr has defaults for all settings so it can be run out of the box to test the examples. However, when you want to create
your own Networks, use your own data, or use your own Tools, it is required to edit your config file.

Fastr will search for a config file named config.py in the SFASTRHOME directory (which defaults to ~/ . fastr/
if it is not set). So if SFASTRHOME is set the ~/ . fastr/ will be ignored.

For a sample configuration file and a complete overview of the options in config.py see the Config file section.

1.2.3 Creating a simple network

If Fastr is properly installed and configured, we can start creating networks. Creating a network is very simple:

>>> import fastr
>>> network = fastr.create_network (id='example', version='1.0")

Now we have an empty network, the next step is to create some nodes and links. Imagine we want to create the
following network:

6 Chapter 1. FASTR Documentation

http://tortoisehg.bitbucket.org/
http://www.atlassian.com/software/sourcetree/overview
http://docs.python-guide.org/en/latest/dev/virtualenvs/

FASTR Documentation, Release 3.0.0

sourcel

Output addint

\ sink 1
left_hand

. result — Input
constl / right_hand
[C1T], U3, 37, [71]

Creating nodes

We will create the nodes and add them to the network. This is done via the network create_ methods. Let’s create
two source nodes, one normal node, and one sink:

>>> sourcel = network.create_source('Int', id='sourcel')

>>> sinkl = network.create_sink('Int', id='sinkl")

>>> addint = network.create_node('fastr/math/AddInt:1.0', tool_version='1.0"', id=
—'addint"'")

The functions Network.create_source, Network.create_sink and Network.create_node create
the desired node and add it into the Network.

A SourceNode and SinkNode only require the datatype to be specified. A Node requires a Tool to be instantiated from.
The id option is optional for all four, but makes it easier to identify the nodes and read the logs. The tool is defined
by a namespace, the id and the version of the command. Many packages have multiple version which are available.
The tool_version argument reflects the version of the Fastr wrapper which describes how the command can be
called. For reproducibility also these are checked as they might be updated as well.

There is an easy way to add a constant to an input, by using a shortcut method. If you assigna 1ist or tuple to an
item in the input list, it will automatically create a ConstantNode and a 7. i nk between the ContantNode and the given
Input:

>>> [1, 3, 3, 7] >> addint.inputs['right_hand']

Link link_0 (network: example):
fastr:///networks/example/1.0/nodelist/const_addint_right_hand_0/outputs/output ==>

— fastr:///networks/example/1.0/nodelist/addint/inputs/right_hand/0

The created constant would have the id const_addint__right_hand_0 as it automatically names the new
constant const_S$nodeid__ S$inputid_S$number.

Note: The use of the >>, <<, and = operators for linking is discussed bellow in section Creating links.

In an interactive python session we can simply look at the basic layout of the node using the repr function. Just type
the name of the variable holding the node and it will print a human readable representation:

>>> sourcel
SourceNode sourcel (tool: Source:1.0 v1.0)
Inputs | Outputs

>>> addint

(continues on next page)

1.2. Quick start guide 7

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#tuple

FASTR Documentation, Release 3.0.0

(continued from previous page)

Node addint (tool: AddInt:1.0 v1.0)

Inputs | Outputs
left_hand (Int)
right_hand (Int) |

This tool has inputs of type Int, so the sources and sinks need to have a matching datatype.

The tools and datatypes available are stored in fastr.tools and fastr.types. These variables are created
when fastr is imported for the first time. They contain all the datatype and tools specified by the json or xml files in
the search paths. To get an overview of the tools and datatypes loaded by fastr:

>>> fastr.tools

ToolManager

%éétr/math/Add:l.O 1.0 .../fastr/resources/tools/fastr/math/1.0/add.xml
fastr/math/AddInt:1.0 1.0 .../fastr/resources/tools/fastr/math/1.0/addint.xml
>>> fastr.types

DataTypeManager

bi%ectory : <URLType: Directory>

fiéat 1 <ValueType: Float>

iﬁé 1 <ValueType: Int>

éé%ing : <ValueType: String>

The fastr.tools variable contains all tools that Fastr could find during initalization. Tools can be chosen in two
tways:

e tools[id] which returns the newest version of the tool

* tools[id, version] which returns the specified version of the tool

Creating links

So now we have a network with 4 nodes defined, however there is no relation between the nodes yet. For this we have
to create some links.

>>> 1linkl = sourcel.output >> addint.inputs['left_hand']
>>> 1ink2 = sinkl.inputs['input'] << addint.outputs['result']

This asks the network to create links and immediately store them inside the network. A link always points from an
Output to an Input (note that SubOutput or SubInputs are also valid). A SourceNode has only 1 output which is fixed,
so it is easy to find. However, addImage has two inputs and one output, this requires us to specify which output we
need. A normal node has a mapping with Inputs and one with Outputs. They can be indexed with the appropriate id’s.
The function returns the links, but you only need that if you are planning to change the properties of a link.

The operators with >> and << clearly indicate the direction of the desired data flow. Also they return the created link,
which is easy if you want to change the flow in a link later on. The last short hand uses the assignment, but it cannot
return the created link and changing the link later on is more difficult.

8 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Create an image of the Network

For checking your Network it is very useful to have a graphical representation of the network. This can be achieved
using the Net work . draw method.

>>> network.draw ()
'example.svg'

This will create a figure in the path returned by the function that looks like:

sourcel

Output addint

\ sink 1
left_hand

result —f input

constl right_hand
(1, ['37, ['3'], [7] 7

Note: for this to work you need to have graphviz installed

1.2.4 Running a Network

Running a network locally is almost as simple as calling the Net work . execute method:

>>> gource_data = {'sourcel': {'sl': 4, 's2': 5, 's3': 6, 's4': 7}}
>>> sink_data = {'sinkl': 'vfs://tmp/fastr_result_{sample_id}.txt'}
>>> run = network.execute (source_data, sink_data)

>>> # Lots output will appear on the stdout while running
>>> run.result # Show if the run was successful or i1f errors were encountered
True

As you can see the execute method needs data for the sources and sinks. This has to be supplied in two dict that
have keys matching every source/sink id in the network. Not supplying data for every source and sink will result in
an error, although it is possible to pass an empty 11 st to a source.

Note: The values of the source data have to be simple values or urls and values of the sink data have to be url
templates. To see what url schemes are available and how they work see /OPlugin Reference. For the sink url
templates see SinkeNode.set_data

For source nodes you can supply a 1ist ora dict with values. If you supply a dict the keys will be interpreted as
sample ids and the values as the corresponding values. If you supply a 1ist, keys will be generated in the form of
id_ {N} where N will be index of the value in the list.

Warning: Asa dict does not have a fixed order, when a dict is supplied the samples are ordered by key to get
a fixed order! For a 1ist the original order is retained.

1.2. Quick start guide 9

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict

FASTR Documentation, Release 3.0.0

For the sink data, an url template has to be supplied that governs how the data is stored. The mini-lanuage (the
replacement fields) are described in the SinkNode. set_data method.

To rerun a stopped/crashed pipeline check the user manual on Continuing a Network

1.3 User Manual

In this chapter we will discuss the parts of Fastr in more detail. We will give a more complete overview of the system
and describe the more advanced features.

1.3.1 Tools

The Tool in Fastr are the building blocks of each workflow. A tool represents a program/script/binary that can be called
by Fastr and can be seens as a template. A Node can be created based on a Tool. A Node will be one processing step
in a workflow, and the tool defines what the step does.

On the import of Fastr, all available Tools will be loaded in a default ToolManager that can be accessed via fastr.
tools. To get an overview of the tools in the system, just print the repr () of the ToolManager:

>>> import fastr
>>> fastr.tools

ToolManager
fastr.math.Add v0.1l : .../fastr/resources/tools/fastr/math/0.1/add.xml
fastr.math.AddInt v0.1l : .../fastr/resources/tools/fastr/math/0.1/addint.xml

As you can see it gives the tool id, version and the file from which it was loaded for each tool in the system. To view
the layout of a tool, just print the repr () of the Tool itself.

>>> fastr.tools['AddInt']

Tool AddInt v0.1 (Add two integers)
Inputs | Outputs

left_hand (Int) | result (Int)

right_hand (Int) \

To add a Tool to the system a file should be added to one of the path in fastr.config.tools_path. The
structure of a tool file is described in Tool description

Create your own tool

There are 4 steps in creating a tool:

1. Create folders. We will call the tool ThrowDie. Create the folder throw_die in the folder fastr-tools. In this
folder create another folder called bin.

2. Place executable in correct place. In this example we will use a snippet of executable python code:

#!/usr/bin/env python
import sys

import random

import json

(continues on next page)

10 Chapter 1. FASTR Documentation

https://docs.python.org/3.7/library/functions.html#repr
https://docs.python.org/3.7/library/functions.html#repr

FASTR Documentation, Release 3.0.0

(continued from previous page)

if (len(sys.argv) > 1):

sides = int (sys.argv[1l])
else:
sides = 6
result = [int (random.randint (1, sides))]

print ('RESULT={}"'.format (json.dumps (result)))

Save this text in a file called throw_die.py
Place the executable python script in the folder throw_die/bin
3. Create and edit xml file for tool. See rool definition reference for all the fields that can be defined in a tool.

Put the following text in file called throw_die.xml.

<tool id="ThrowDie" description="Simulates a throw of a die. Number of sides of_
—the die is provided by user"
name="throw_die" version="1.0">
<authors>
<author name="John Doe" />
</authors>
<command version="1.0" >
<authors>
<author name="John Doe" url="http://a.b/c" />
</authors>
<targets>
<target arch="x" bin="throw_die.py" interpreter="python" os="x" paths='bin/
' />
</targets>
<description>
throw_die.py number_of_sides
output = simulated die throw
</description>
</command>
<interface>
<inputs>
<input cardinality="1" datatype="Int" description="Number of die sides" id=
—"die_sides" name="die sides" nospace="False" order="0" required="True"/>
</inputs>
<outputs>
<output id="output" name="output value" datatype="Int" automatic="True"_
—cardinality="1" method="json" location=""RESULT=(.x)S$" />
</outputs>
</interface>
</tool>

Put throw_die.xml in the folder example_tool. All Attributes in the example above are required. For a complete
overview of the xml Attributes that can be used to define a tool, check the Tool description. The most important
Attributes in this xml are:

id : The id is used in in FASTR to create an instance of your tool, this,
—name will appear in the tools when you type fastr.tools.

targets : This defines where the executables are located and on which platform
—they are available.

inputs : This defines the inputs that you want to be used in FASTR, how FASTR_
—should use them and what data is allowed to be put in there.

1.3. User Manual 11

FASTR Documentation, Release 3.0.0

More xml examples can be found in the fastr-tools folder.

4) Edit configuration file. Append the line [PATH TO LOCATION OF FASTR-TOOLS]/fastr-tools/
throw_die/ to the the config.py (located in ~/.fastr/ directory) to the tools_path. See Config file for
more information on configuration.

You should now have a working tool. To test that everything is ok do the following in python:

>>> import fastr
>>> fastr.tools

Now a list of available tools should be produced, including the tool ThrowDie

To test the tool create the script test_throwdie.py:

import fastr

Create network
network = fastr.create_network ('ThrowDie')

Create nodes

sourcel = network.create_source('Int', id='sourcel')
sinkl = network.create_sink('Int', id='sinkl")

throwdie = network.create_node ('ThrowDie', id='throwdie')

Create 1links
linkl = sourcel.output >> throwdie.inputs['die_sides']
link2 = throwdie.outputs['output'] >> sinkl.inputs['input']

Draw and execute

source_data = {'sourcel': {'sl': 4, 's2': 5, 's3': 6, 's4': 7T}}
sink_data = {'sinkl': 'vfs://tmp/fastr_result_{sample_id}.txt'}
network.draw ()

network.execute (source_data, sink_data)

Call the script from commandline by

$ python test_throwdie.py

An image of the network will be created in the current directory and result files will be put in the tmp directory.
The result files are called fastr_result_sl.txt, fastr_result_s2.txt, fastr_result_s3.txt,
and fastr_result_s4.txt

Note: If you have code which is operating system depend you will have to edit the xml file. The following gives and
example of how the elastix tool does this:

<targets>

" arch="+" bin="elastix.exe">

<target os="windows
<paths>
<path type="bin" value="vfs://apps/elastix/4.7/install/" />
<path type="1ib" value="vfs://apps/elastix/4.7/install/lib" />
</paths>
</target>
<target os="linux" arch="x
<paths>
<path type="bin" value="vfs://apps/elastix/4.7/install/" />
<path type="1ib" value="vfs://apps/elastix/4.7/install/lib" />

" modules="elastix/4.7" bin="elastix">

(continues on next page)

12 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

(continued from previous page)

</paths>
</target>
<target os="darwin" arch="«" modules="elastix/4.7" bin="elastix">
<paths>
<path type="bin" value="vfs://apps/elastix/4.7/install/" />
<path type="1ib" value="vfs://apps/elastix/4.7/install/lib" />
</paths>
</target>
</targets>

vfs is the virtual file system path, more information can be found at VirtualFileSystemn.

1.3.2 Network

A Network represented an entire workflow. It hold all Nodes, Links and other information required to execute the
workflow. Networks can be visualized as a number of building blocks (the Nodes) and links between them:

target_img

‘ output [N]

template_img

‘ output [M] elastix
\ [N] fixed_image
param_file [M] moving_image directory

‘ output [O] =t [R] parameters

fixed_mask

transform [NxM]
moving_mask
initial_transform transformix
priority log_file [NxM] transform directory combine

threads

[M] image image [NxM] — [N] images sink_image
—_— ints hard_s t [N] —f [N] input
P — points Tt [P] method ard_segment [N] [N] inpu
= determinant_of_jacobian_flag [Q] number_of_classes
output [M] " 5 5 determinant_of_jacobian i
jacobian_matrix_flag

Jjacobian_matrix

original_labels

soft_:

priority substitute_labels

threads log_file

const_combine_method
[['VOTE'] [P]

const_combine_number_of_classes

(371 [Q]

An empty network is easy to create, all you need is to name it:

>>> network = fastr.create_network (id="network name")

the network is the main interface to fastr, from it you can create all elements to create a workflow. in the following
sections the different elements of a net work will be described in more detail.

Node

Nodes are the point in the Net work where the processing happens. A Node takes the input data and executes jobs
as specified by the underlying Tool. A Nodes can be created easily:

>>> node2 = network.create_node(tool, id='nodel', step_id='stepl"')

We tell the Network to create a Node using the create node method. Optionally you can add define a step_id
for the node which is a logical grouping of Nodes that is mostly used for visualization.

1.3. User Manual 13

FASTR Documentation, Release 3.0.0

Note: For a Node, the tool can be given both as the Tool class or the id of the tool. This id can be just the id or a tuple
with the id and version.

A Node contains Tnputs and Outputs. To see the layout of the Node one can simply look at the repr ().

>>> addint = network.create_node ('AddInt', id='addint')
>>> addint
Node addint (tool: AddInt v1.0)
Inputs | Outputs
left_hand (Int) | result (Int)
right_hand (Int) |

The inputs and outputs are located in mappings with the same name:

>>> addint.inputs
<Input map, items: ['left_hand', 'right_hand']>

>>> addint.outputs
<Output map, items: ['result']>

The InputMap and OutputMap are classes that behave like mappings. The InputMap also facilitates the linking short-
hand. By assigning an Output to an existing key, the InputMap will create a Link between the Input and Output.

SourceNode

A SourceNode is a special kind of node that is the start of a workflow. The SourceNodes are given data at run-time
that fetched via IOPlugins. On create, only the datatype of the data that the SourceNode supplied needs to be known.
Creating a SourceNode is very similar to an ordinary node:

>>> sourcel = network.create_source('Int', id='sourcel', step_id='stepl', node_group=
—'subject")

The first argument is the type of data the source supplies. The other optional arguments are for naming and grouping
of the nodes. A SourceNode only has a single output which has a short-cut access via source.output.

Note: For a source or constant node, the datatype can be given both as the BaseDataType class or the id of the
datatype.

ConstantNode

A ConstantNode is another special node. It is a subclass of the SourceNode and has a similar function. However,
instead of setting the data at run-time, the data of a constant is given at creation and saved in the object. Creating a
ConstantNode is similar as creating a source, but with supplying data:

>>> constantl = network.create_constant ('Int', [42], id='constantl', step_id='stepl', ,
—node_group="'"subject)

The first argument is the datatype the node supplies, similar to a SourceNode. The second argument is the data that
is contained in the ConstantNode. Often, when a ConstantNode is created, it is created specifically for one input and
will not be reused. In this case there is a shorthand to create and link a constant to an input:

14 Chapter 1. FASTR Documentation

https://docs.python.org/3.7/library/functions.html#repr

FASTR Documentation, Release 3.0.0

>>> link = addint.inputs['valuel'] << [42]
>>> link [42] >> addint.inputs['valuel']
>>> addint.inputs['valuel'] = [42]

are three methods that will create a constant node with the value 42 and create a link between the output and input
addint.valuel.

SinkNode

The SinkNode is the counter-part of the source node. Instead of get data into the workflow, it saves the data resulting
from the workflow. For this a rule has to be given at run-time that determines where to store the data. The information
about how to create such a rule is described at SinkNode.set_data. At creation time, only the datatype has to be
specified:

>>> sink2 = network.create_sink('Int', id='sink2', step_id='stepl', node_group=
—'subject")

Link

Links indicate how the data flows between Nodes. Links can be created explicitly using on of the following:

>>> link = network.create_link (nodel.outputs['image'], node2.inputs['image'])

or can be create implicitly by a short hand (there are three options):

This style of assignment will create a Link similar to above
>>> link = nodel.outputs['image'] >> node2.inputs|['image']

>>> link = node2.inputs|'image'] << nodel.outputs['image']

>>> node2.inputs['image'] = nodel.outputs|['image']

Note that a Link is also create automatically when using the short-hand for the ConstantNode
<fastr.planning.node.ConstantNode>*.

1.3.3 Data Flow

The data enters the Network via SourceNodes flows via other Node and leaves the Network via SinkNodes.The flow
between Nodes goes from an Output via a Link to an Input. In the following image it is simple to track the data from
the SourceNodes at the left to the SinkNodes at right side:

sourcel

Output addint

\ sink 1
left_hand

. result — input
constl / right_hand
[(['T'], ['3'], ['3'], ['7']]

Note that the data in Fastr is stored in the Output and the Link and Input just give access to it (possible while trans-
forming the data).

1.3. User Manual 15

FASTR Documentation, Release 3.0.0

Data flow inside a Node

In a Node all data from the Inputs will be combined and the jobs will be generated. There are strict rules to how this
combination is performed. In the default case all inputs will be used pair-wise, and if there is only a single value for
an input, it it will be considered as a constant.

To illustrate this we will consider the following Tool (note this is a simplified version of the real tool):

>>> fastr.tools['Elastix']
Tool Elastix v4.8 (Elastix Registration)

Inputs Outputs
fixed_image (ITKImageFile) | transform
— (ElastixTransformFile)
moving_image (ITKImageFile)
parameters (ElastixParameterFile) |

Also it is important to know that for this tool (by definition) the cardinality of the t ransform Output will match the
cardinality of the parameters Input.

If we supply a Node based on this Tool with a single sample on each Input there will be one single matching Output
sample created:

(o)
(my) w» (%r0,mo,p0)
(Po)

If the cardinality of the parameters sample would be increased to 2, the resulting t rans form sample would also
become 2:

(o)

results in

(mo) (th,mO,pOI ttO,mO,pl)

(pO! pl)

Now if the number of samples on fixed_image would be increased to 3, the moving_image and parameters
will be considered constant and be repeated, resulting in 3 t ransform samples.

(fo) (my) (tt0,mo,p0)
(f,) Jesults i 1 (tr1,mo,p0)
(f,) (Po) (tr2.mo.p0)

Then if the amount of samples for moving_image is also increased to 3, the moving_image and fixed_image
will be used pairwise and the parameters will be constant.

16 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

(fo) (mo) (th,mO,pOI th,mO,pl)

(fl) (ml) m(tfl,ml,pOI tfl,ml,pl)

(f2) (m,) (tf2,m2,p0! tf2,m2,p1)
(Por P1)

Advanced flows in a Node

Sometimes the default pairwise behaviour is not desirable. For example if you want to test all combinations of certain
input samples. To achieve this we can change the input_group of Inputs to set them apart from the rest. By
default all Inputs are assigned to the default input group. Now let us change that:

>>> node = network.create_node('Elastix', id='elastix')
>>> node.inputs['moving_image'].input_group = 'moving'

This will result in moving_image to be put in a different input group. Now if we would supply fixed_image
with 3 samples and moving_image with 4 samples, instead of an error we would get the following result:

(fo) (my) (t10,mo,p0) (t10,m1,p0) (t10,m2,p0) (t10,m3,p0)

(f1) (%) (m,) &Itsin) (ts1,mo,00) (tr1,m1,00) (tr1,m2,p0) (t1,m3,00)

(f2) (m3) (tr2,mo,p0) (tr2,m1,p0) (tr2,m2,p0) (tr2,m3,p0)
o

Warning: TODO: Expand this section with the merging dimensions

Data flows in a Link
As mentioned before the data flows from an Output to an Input through a Link. By default the Link passed the data as
is, however there are two special directives that change the shape of the data:

1. Collapsing flow, this collapses certain dimensions from the sample array into the cardinality. As a user you have
to specify the dimension or tuple of dimensions you want to collapse.

dim?2

diml

(o) I ™~ (ag ,bo, Co)
collapse E 0r¥or ~0
(bo) (b,) T > 5 (by, ¢;)

(co) (c1)

This is useful in situation where you want to use a tool that aggregates over a number of samples (e.g. take a
mean or sum).

To achieve this you can set the collapse property of the Link as follows:

>>> link.collapse 'diml'
>>> link.collapse = ('diml', 'dim2') # In case you want to collapse multiple_
—dimensions

1.3. User Manual 17

FASTR Documentation, Release 3.0.0

2. Expanding flow, this turns the cardinality into a new dimension. The new dimension will be named after the
Output from which the link originates. It will be in the form of {nodeid}__ {outputid}

dim?2

— (ao) — (ao)
El (bo by | NG E| (by) (by)
(co» C1) (co) (c1)

This flow directive is useful if you want to split a large sample in multiple smaller samples. This could be
because processing the whole sample is not feasible because of resource constraints. An example would be
splitting a 3D image into slices to process separately to avoid high memory use or to achieve parallelism.

To achieve this you can set the expand property of the Link to True:

>>> link.expand = True

Note: both collapsing and expanding can be used on the same link, it will executes similar to a expand-collapse
sequence, but the newly created expand dimension is ignored in the collapse.

— (aop) ~

El (by, by) |-SXpand &collapse ¢ (ag ,bo, <o)

5 o1 (diml) ™ 5| (b, ;)
(CO! cl)

>>> link.collapse = 'diml'

>>> link.expand = True

Data flows in an Input

If an Input has multiple Links attached to it, the data will be combined by concatenating the values for each corre-
sponding sample in the cardinality.

Broadcasting (matching data of different dimensions)

Sometimes you might want to combine data that does not have the same number of dimensions. As long as all di-
mensions of the lower dimensional datasets match a dimension in the higher dimensional dataset, this can be achieved
using broadcasting. The term broadcasting is borrowed from NumPy and described as:

“The term broadcasting describes how numpy treats arrays with different shapes during arithmetic oper-
ations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so that they
have compatible shapes.”

—NumPy manual on broadcasting

In fastr it works similar, but to combined different Inputs in an InputGroup. To illustrate broadcasting it is best to use
an example, the following network uses broadcasting in the t ransformix Node:

18 Chapter 1. FASTR Documentation

http://www.numpy.org/
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.broadcasting.html

FASTR Documentation, Release 3.0.0

target_img
[output [N]

template_img

[output [M]

elastix

param_file \

[N] fixed_image

[M] moving_image

[output [O] je—pn

[R] parameters

directory

fixed_mask

moving_mask

transform [NxM]

initial_transform

priority

threads

transformix

log_file

[NxM] transform

mask_image /
output [M]

[M] image

points

determinant_of_jacobian_flag

jacobian_matrix_flag

determinant_of_jacobian

priority

Jjacobian_matrix

threads

log_file

const_combine_method

[['VOTE'] [P]

const_combine_number_of_classes

(371 [Q]

directory Combine
image [NxM] (S [N] images sink_image
points [P] method hard_segment [N] {— [N] input

[Q] number_of_classes

original_labels

soft_segment

substitute_labels

As you can see this visualization prints the dimensions for each Input and Output (e.g. the elastix.fixed_image
Input has dimensions [N]). To explain what happens in more detail, we present an image illustrating the details for
the samples in elastix and transformix:

g

(fo)

| (

f.)

(

dim fixed

f2)

(Po)

vN

g

(my)

(m,)

®

(my)

dim movin

(m3)

o]0

e: elastix

2 (i0) - dim_moving
8 (i) 2 (th,mO,pO) (th, ,pO) (th,mZ,pO) (tfo,m3,p0)
EI (im2) EI (tfl,mO,pO) (tfl, ,pO) (tfl,mZ,pO) (tfl,m3,po)
._% (im3) 5 (th,mO,pO) (tf2, ,pO) (tf2,m2,p0) (tf2,m3,p0)
{ Node: transformix
- dim_moving
) (ir0,m0,p0) (iro, . 1,po) (¥r0,m2,p0) (¥r0,13,p0)
E' (ir1 m0,00) (i, 0 (i1 m2.p0) (ir1,,p0)
o (ir2,m0,p0) (ir2, 1 po) (ir2,m2,p0) (¥r2,13,p0)

In the figure the moving_image (and references to it) are identified with different colors, so they are easy to track
across the different steps.

At the top the Inputs for the elastix Node are illustrated. Because the input groups a set differently, output sam-
ples are generated for all combinations of fixed_image and moving_image (see Advanced flows in a Node for

details).

1.3. User Manual

19

FASTR Documentation, Release 3.0.0

In the transformix Node, we want to combine a list of samples that is related to the moving_image (it has the
same dimension name and sizes) with the resulting t ransform samples from the elastix Node. As you can see
the sizes of the sample collections do not match ([N] vs [N x M]). This is where broadcasting comes into play,
it allows the system to match these related sample collections. Because all the dimensions in [N] are known in [N
x M], it is possible to match them uniquely. This is done automatically and the result is a new [N xM] sample
collection. To create a matching sample collections, the samples in the t ransformix.image Input are reused as
indicated by the colors.

Warning: Note that this might fail when there are data-blocks with non-unique dimension names, as it will be
not be clear which of the dimensions with identical names should be matched!

1.3.4 DataTypes

In Fastr all data is contained in object of a specific type. The types in Fastr are represented by classes that subclass
BaseDataType. There are a few different other classes under BaseDataType that are each a base class for a
family of types:

* DataType — The base class for all types that hold data

— ValueType — The base class for types that contain simple data (e.g. Int, String) that can be represented
as a str

— EnumType — The base class for all types that are a choice from a set of options
— URLType — The base class for all types that have their data stored in files (which are referenced by URL)

* TypeGroup — The base class for all types that actually represent a group of types

e fastr.core.serializable.Serializable
G fastr.core.datatypemanager.BaseDataType
G fastr.core.datatypemanager.DataType o fastr.core.datatypemanager.TypeGroup

e fastr.core.datatypemanager.EnumType e fastr.core.datatypemanager.ValueType o fastr.core.datatypemanager.URLType

Fig. 1.2: The relation between the different DataType classes
The types are defined in xml files and created by the DataTypeManager. The DataTypeManager acts as a

container containing all Fastr types. It is automatically instantiated as fastr . types. In fastr the created DataTypes
classes are also automatically place in the fastr.datatypes module once created.

Resolving Datatypes

Outputs in fastr can have a TypeGroup or a number of DataTypes associated with them. The final DataType

20 Chapter 1. FASTR Documentation

https://docs.python.org/3.7/library/stdtypes.html#set

FASTR Documentation, Release 3.0.0

used will depend on the linked Tnputs. The DataType resolving works as a two-step procedure.
1. All possible DataTypes are determined and considered as options.
2. The best possible DataType from options is selected for non-automatic Outputs

The options are defined as the intersection of the set of possible values for the Output and each separate Tnput
connected to the Output. Given the resulting options there are three scenarios:

e If there are no valid DataTypes (options is empty) the result will be None.

o If there is a single valid DataType, then this is automatically the result (even if it is not a preferred
DataType).

* If there are multiple valid DataTypes, then the preferred DataTypes are used to resolve conflicts.
There are a number of places where the preferred DataTypes can be set, these are used in the order as given:
1. The preferred keyword argument to match_types

2. The preferred types specified in the fastr.config

1.3.5 Execution

Executing a Network is very simple:

>>> gource_data = {'source_idl': ['vall', 'val2'],
'source_id2': {'id3': 'val3', 'id4': 'vald'}}
>>> sink_data = {'sink_idl': 'vfs://some_output_location/{sample_id}/file.txt"'}

>>> network.execute (source_data, sink_data)

The Network . execute method takes a dict of source data and a dict sink data as arguments. The dictionaries
should have a key for each SourceNode or SinkNode.

The execution of a Network uses a layered model:
* Network.execute will analyze the Network and call all Nodes.
* Node.execute will create jobs and fill their payload
* execute_ job will execute the job on the execute machine and resolve any deferred values (val:// urls).
* Tool.execute will find the correct target and call the interface and if required resolve vfs: // urls
* Interface.execute will actually run the required command(s)

The ExecutionPlugin will call call the executionscript.py for each job, passing the job as a gzipped
pickle file. The executionscript . py will resolve deferred values and then call Too1 . execut e which analyses
the required target and executes the underlying Tnterface. The Interface actually executes the job and collect the
results. The result is returned (via the Tool) to the executionscript.py. There we save the result, provenance
and profiling in a new gzipped pickle file. The execution system will use a callback to load the data back into the
Network.

The selection and settings of the ExecutionPlugin are defined in the fastr config.
Continuing a Network
Normally a random temporary directory is created for each run. To continue a previously stopped/crashed network,

you should call the Network.execute method using the same temporary directory(tmp dir). You can set the
temporary directory to a fixed value using the following code:

1.3. User Manual 21

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict

FASTR Documentation, Release 3.0.0

>>> tmpdir = '/tmp/example_network_rerun'
>>> network.execute (source_data, sink_data, tmpdir=tmpdir)

Warning: Be aware that at this moment, Fastr will rerun only the jobs where not all output files are present or if
the job/tool parameters have been changed. It will not rerun if the input data of the node has changed or the actual
tools have been adjusted. In these cases you should remove the output files of these nodes, to force a rerun.

1.3.6 IOPlugins

Sources and sink are used to get data in and out of a Net work during execution. To make the data retrieval and storage
easier, a plugin system was created that selects different plugins based on the URL scheme used. So for example, a
url starting with vfs:// will be handles by the VirtualFileSystem plugin. Alistof all the TOPIugins
known by the system and their use can be found at /OPlugin Reference.

1.3.7 Secrets

Fastr uses a secrets system for storing and retrieving login credentials. Currently the following keyrings are supported:

* Python keyring and keyrings.alt lib: - Mac OS X Keychain - Freedesktop Secret Service (requires secretstorage)
- KWallet (requires dbus) - Windows Credential Vault - Gnome Keyring - Google Keyring (stores keyring
on Google Docs) - Windows Crypto API (File-based keyring secured by Windows Crypto API) - Windows
Registry Keyring (registry-based keyring secured by Windows Crypto API) - PyCrypto File Keyring - Plaintext
File Keyring (not recommended)

¢ Netrc (not recommended)

When a password is retrieved trough the fastr SecretService it loops trough all of the available SecretProviders (cur-
rently keyring and netrc) until a match is found.

The Python keyring library automatically picks the best available keyring backend. If you wish to choose your own
python keyring backend it is possible to do so by make a keyring configuration file according to the keyring library
documentation. The python keyring library connects to one keyring. Currently it cannot loop trough all available
keyrings until a match is found.

1.3.8 Debugging

This section is about debugging Fastr tools wrappers, Fastr Networks (when building a Network) and Fastr Network
Runs.

Debugging a Fastr tool

When wrapping a Tool in Fastr sometimes it will not work as expected or not load properly. Fastr is shipped with a
command that helps checking Tools. The fastr verify command can try to load a Tool in steps to make it more easy to
understand where the loading went wrong.

The fastr verify command will use the following steps:
* Try to load the tool with and without compression
* Try to find the correct serializer and make sure the format is correct

* Try to validate the Tool content against the json_schema of a proper Tool

22 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

* Try to create a Tool object
¢ If available, execute the tool test

An example of the use of fastr verify:

$ fastr verify tool fastr/resources/tools/fastr/math/0.1/add.xml
[INFO] verify:0020 >> Trying to read file with compression OFF

[INFO] verify:0036 >> Read data from file successfully

[INFO] verify:0040 >> Trying to load file using serializer "xml"

[INFO] verify:0070 >> Validating data against Tool schema

[INFO] verify:0080 >> Instantiating Tool object

[INFO] verify:0088 >> Loaded tool <Tool: Add version: 1.0> successfully
[INFO] verify:0090 >> Testing tool...

If your Tool is loading but not functioning as expected you might want to easily test your Tool without building an
entire Network around it that can obscure errors. It is possible to run a tool from the Python prompt directly using
tool.execute:

>>> tool.execute (left_hand=40, right_hand=2)
[INFO] localbinarytarget:0090 >> Changing ./bin

[INFO] too0l:0311 >> Target is <Plugin: LocalBinaryTarget>

[INFO] t00l1:0318 >> Using payload: {'inputs': {'right_hand': (2,), 'left_hand':
—(40,)}, 'outputs': {}}

[INFO] localbinarytarget:0135 >> Adding extra PATH: ['/home/hachterberg/dev/fastr-
—develop/fastr/fastr/resources/tools/fastr/math/0.1/bin"]

[INFO] fastrinterface:0393 >> Execution payload: {'inputs': {'right_hand': (2,),
—'left_hand': (40,)}, 'outputs': {}}

[INFO] fastrinterface:0496 >> Adding (40,) to argument list based on <fastrinterface.
—InputParameterDescription object at 0x7fc950£fa8850>

[INFO] fastrinterface:0496 >> Adding (2,) to argument list based on <fastrinterface.
—InputParameterDescription object at 0x7£c950fa87d0>

[INFO] localbinarytarget:0287 >> Options: ['/home/hachterberg/dev/fastr-develop/fastr/
—fastr/resources/tools/fastr/math/0.1/bin"]

[INFO] localbinarytarget:0201 >> Calling command arguments: ['python', '/home/
—hachterberg/dev/fastr-develop/fastr/fastr/resources/tools/fastr/math/0.1/bin/addint.
—py', '--inl', '40', '-=in2', '2']

[INFO] localbinarytarget:0205 >> Calling command: "'python' '/home/hachterberg/dev/
—fastr-develop/fastr/fastr/resources/tools/fastr/math/0.1/bin/addint.py"' '—-inl' '40
;}l '77in2' |2||l

[INFO] fastrinterface:0400 >> Collecting results

1
[INFO] executionpluginmanager:0467 >> Callback processing thread ended!
[INFO] executionpluginmanager:0467 >> Callback processing thread ended!
[INFO] executionpluginmanager:0467 >> Callback processing thread ended!
[INFO] Jjsoncollector:0076 >> Setting data for result with [42]
<fastr.core.interface.InterfaceResult at 0x7fc966lccfd0>

In this case an AddInt was ran from the python shell. As you can see it shows the payload it created based on the call,
followed by the options for the directories that contain the binary. Then the command that is called is given both as a
list and string (for easy copying to the prompt yourself). Finally the collected results is displayed.

Note: You can give input and outputs as keyword arguments for execute. If an input and output have the same name,
you can disambiguate them by prefixing them with in_ or out__ (e.g. in_image and out_image)

1.3. User Manual 23

FASTR Documentation, Release 3.0.0

Debugging an invalid Network

The simplest command to check if your Network is considered valid is to use the Network. is_valid method. It
will simply check if the Network is valid:

>>> network.is_valid()
True

It will return a boolean that only indicates the validity of the Network, but it will print any errors it found to the
console/log with the ERROR log level, for example when datatypes on a link do not match:

>>> invalid_network.is_valid()

[WARNING] datatypemanager:0388 >> No matching DataType available (args (<ValueType:,
—Float class [Loaded]>, <ValueType: Int class [Loaded]>))

[WARNING] 1ink:0546 >> Cannot match datatypes <ValueType: Float class [Loaded]> |
—and <ValueType: Int class [Loaded]> or not preferred datatype is set! Abort linking,
—fastr:///networks/add_ints/0.0/nodelist/source/outputs/output to fastr:///networks/
—add_ints/0.0/nodelist/add/inputs/left_hand!

[WARNING] datatypemanager:0388 >> No matching DataType available (args (<ValueType:,
—Float class [Loaded]>, <ValueType: Int class [Loaded]>))

[ERROR] network:0571 >> [add] Input left_hand is not valid: SubInput fastr:///
—networks/add_ints/0.0/nodelist/add/inputs/left_hand/0 is not valid: SubInput source,
— (1link_0) is not wvalid

[ERROR] network:0571 >> [add] Input left_hand is not valid: SubInput fastr:///
—networks/add_ints/0.0/nodelist/add/inputs/left_hand/0 is not valid: [link_0] source
—and target have non-matching datatypes: source Float and Int

[ERROR] network:0571 >> [link_0] source and target have non-matching datatypes:
—source Float and Int

—

False

Because the messages might not always be enough to understand errors in the more complex Networks, we would
advice you to create a plot of the network using the network.draw_network method:

>>> network.draw_network (network.id, draw_dimensions=True, expand_macro=True)
'add_ints.svg'

The value returned is the path of the output image generated (it will be placed in the current working directory. The
draw_dimensions=True will make the drawing add indications about the sample dimensions in each Input and
Output, whereas expand_macro=True causes the draw to expand MacroNodes and draw the content of them. If
you have many nested MacroNodes, you can set expand_macro to an integer and that is the depth until which the
MacroNodes will be draw in detail.

An example of a simple multi-atlas segmentation Network nicely shows the use of drawing the dimensions, the di-
mensions vary in certain Nodes due to the use of input_groups and a collapsing link (drawn in blue):

24 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

target_img
[output [N]

template_img

[output [M] elastix
\ [N] fixed_image

param_file [M] moving_image directory

[output [O] (== [R] parameters

fixed_mask

transform [NxM]
moving_mask
initial_transform transformix

priority log_file

[NxM] transform directory combine

threads [M] image image [NxM] G N sink_image
- points - hard_segment [N] — [N] input
mask_image / points [P] method

determinant_of_jacobian_flag acces
output [M] — - determinant_of_jacobian QU et Off ks
jacobian_matrix_flag

Jjacobian_matrix

original_labels

soft_segment

priority
threads log_file

substitute_labels

const_combine_method
[['VOTE'] [P]

const_combine_number_of_classes

(371 [Q]

Debugging a Network run with errors

If a Network run did finish but there were errors detected, Fastr will report those at the end of the execution. We
included an example of a Network that has failing samples in fastr/examples/failing_network.py which
can be used to test debugging. An example of the output of a Network run with failures:

[INFO] networkrun:0604 >> ###########444#HHHHHHH44HFHHHHHSHHHH
[INFO] networkrun:0605 >> # network execution FINISHED #
[INFO] networkrun:0606 >> ##########4H# 44444444444 HS4HHEHHH4HHS
[INFO] networkrun:0618 >> ===== RESULTS =====

[INFO] networkrun:0627 >> sink_1: 2 success / 2 failed

[INFO] networkrun:0627 >> sink_2: 2 success / 2 failed

[INFO] networkrun:0627 >> sink_3: 1 success / 3 failed

[INFO] networkrun:0627 >> sink_4: 1 success / 3 failed

[INFO] networkrun:0627 >> sink_5: 1 success / 3 failed

[INFO] networkrun:0628 >> ===
[WARNING] networkrun:0651 >> There were failed samples in the run, to start debugging,
—you can run:

fastr trace SRUNDIR/_ sink_data__ .Jjson --sinks

see the debug section in the manual at https://fastr.readthedocs.io/en/default/static/
—user_manual .html#debugging for more information.

As you can see, there were failed samples in every sink. Also you already get the suggestion to use fastr trace. This
command helps you inspect the staging directory of the Network run and pinpoint the errors.

The suggested command will print a similar summary as given by the network execution:

$ fastr trace $SRUNDIR/__ sink_data__.json —--sinks

sink_1 —— 2 failed —-- 2 succeeded
sink_2 -- 2 failed -- 2 succeeded
sink_3 -- 3 failed —-- 1 succeeded
sink_4 —-— 3 failed —-- 1 succeeded
sink_5 -- 3 failed -- 1 succeeded

1.3. User Manual 25

FASTR Documentation, Release 3.0.0

Since this is not given us new information we can add the —v flag for more output and limit the output to one sink, in
this case sink_5:

$ fastr trace $RUNDIR/_ sink_data__ .json —--sinks sink_5
sink_5 -- 3 failed -- 1 succeeded

sample_1_1: Encountered error: [FastrOutputValidationError] Could not find result
—for output out_2 (/home/hachterberg/dev/fastr-develop/fastr/fastr/execution/job.
—py:970)

sample_1_2: Encountered error: [FastrOutputValidationError] Could not find result
—for output out_1 (/home/hachterberg/dev/fastr-develop/fastr/fastr/execution/job.
—~py:970)

sample_1_3: Encountered error: [FastrOutputValidationError] Could not find result
—for output out_1 (/home/hachterberg/dev/fastr-develop/fastr/fastr/execution/job.
—~py:970)

sample_1_3: Encountered error: [FastrOutputValidationError] Could not find result
—for output out_2 (/home/hachterberg/dev/fastr-develop/fastr/fastr/execution/job.
—py:970)

Now we are given one error per sample, but this does not yet give us that much information. To get a very detailed
report we have to specify one sink and one sample. This will make the fastr trace command print a complete
error report for that sample:

$ fastr trace SRUNDIR/_ sink_data_ .json —-sinks sink_5 —--sample sample_1_1 -v
Tracing errors for sample sample_1_1 from sink sink_5

Located result pickle: /home/hachterberg/FastrTemp/fastr_failing_network_2017-09-
—04T10-44-58_uMWeMV/step_1/sample_1_1/_ fastr_result_ .pickle.gz

===== JOB failing_network___ step_1__ sample_1_1 =====

Network: failing_network

Run: failing_network_2017-09-04T10-44-58

Node: step_1

Sample index: (1)

Sample id: sample_1_1

Status: JobState.execution_failed

Timestamp: 2017-09-04 08:45:19.238192

Job file: /home/hachterberg/FastrTemp/fastr_failing_network_2017-09-04T10-44-58_
—UuMWeMV/step_1/sample_1_1/_ fastr_result_ .pickle.gz

Command:

List representation: [u'python', u'/home/hachterberg/dev/fastr-develop/fastr/fastr/
—resources/tools/fastr/util/0.1/bin/fail.py', u'--in_1', u'l', u'--in_2', u'l', u'--
—fail_2"]

String representation: 'python' '/home/hachterberg/dev/fastr-develop/fastr/fastr/
—resources/tools/fastr/util/0.1/bin/fail.py' '--in_1' '1' '==in_2' '1' '——=fail_2"

Output data:
{'out_1': [<Int: 2>]}

Status history:

2017-09-04 08:45:19.238212: JobState.created
2017-09-04 08:45:21.537417: JobState.running
2017-09-04 08:45:31.578864: JobState.execution_failed

————— ERRORS ——-—-—

- FastrOutputValidationError: Could not find result for output out_2 (/home/
—hachterberg/dev/fastr-develop/fastr/fastr/execution/job.py:970)

- FastrValueError: [failing_ network step_1 sample_1_1] Output values are not,

—validl (/home/hachterberg/dev/fastr-develop/fastr/fastr/execution/ job.wsontsliés on next page)

26 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

(continued from previous page)

77777 STDOUT ———--

Namespace (fail_1=False, fail_2=True, in_1=1, in_2=1)
in 1 1

in 2 :1

fail 1: False
fail_2: True
RESULT_1=[2]

As shown above, it finds the result files of the failed job(s) and prints the most important information. The first
paragraph shows the information about the Job that was involved. The second paragraph shows the command used
both as a list (which is clearer and internally used in Python) and as a string (which you can copy/paste to the shell to
test the command). Then there is the output data as determined by Fastr. The next section shows the status history of
the Job which can give an indication about wait and run times. Then there are the errors that Fastr encounted during
the execution of the Job. In this case it could not find the output for the Tool. Finally the stdout and stderr of the
subprocess are printed. In this case we can see that RESULT_2=[...] was not in the stdout, and so the result could not
be located.

Note: Sometimes there are no Job results in a directory, this usually means the process got killed before the Job could
finished. On cluster environments, this often means that the process was killed due to memory constraints.

Asking for help with debugging
If you would like help with debugging, you can contact us via the fastr-users google group. To enable us to track the
errors please include the following:

* The entire log of the fastr run (can be copied from console or from the end of ~/ . fastr/logs/info. log.

¢ A dump of the network run, which can be created that by using the fastr dump command like:

$ fastr dump $RUNDIR fastr_run_dump.zip

This will create a zip file including all the job files, logs, etc but not the actual data files.

These should be enough information to trace most errors. In some cases we might need to ask for additional informa-
tion (e.g. tool files, datatype files) or actions from your side.

1.3.9 Naming Convention

For the naming convention of the tools we tried to stay close to the Python PEP 8 coding style. In short, we defined
toolnames as classes so they should be UpperCamelCased. The inputs and outputs of a tool we considered as functions
or method arguments, these should we named lower_case_with_underscores.

An overview of the mapping of Fastr to PEP 8:

1.3. User Manual 27

https://groups.google.com/forum/#!forum/fastr-users
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

FASTR Documentation, Release 3.0.0

Fastr construct | Python PEP8 equivalent | Examples

Network.id brain_tissue_segmentation
module

Tool.id 1 BrainExtractionTool, ThresholdImage
class

Node.id brain_extraction, threshold_mask

variable name

Input/Output.id image, number_of_classes, probability_image

method

Furthermore there are some small guidelines:
* No input or output in the input or output names. This is already specified when setting or getting the data.
* Add the type of the output that is named. i.e. enum, string, flag, image,
— No File in the input/output name (Passing files around is what Fastr was developed for).
— No type necessary where type is implied i.e. lower_threshold, number_of_levels, max_threads.

* Where possible/useful use the fullname instead of an abbreviation.

1.3.10 Provenance

For every data derived data object, Fastr records the Provenance. The SinkNode write provenance records next to
every data object it writes out. The records contain information on what operations were performed to obtain the
resulting data object.

W3C Prov
The provenance is recorded using the W3C Prov Data Model (PROV-DM). Behind the scences we are using the python
prov implementation.

The PROV-DM defines 3 Starting Point Classes and and their relating properties. See Fig. 1.3 for a graphic represen-
tation of the classes and the relations.

Fig. 1.3: The three Starting Point classes and the properties that relate them. The diagrams in this document depict
Entities as yellow ovals, Activities as blue rectangles, and Agents as orange pentagons. The responsibility properties
are shown in pink.*?

Implementation

In the workflow document the provenance classes map to fastr concepts in the following way:
Agent Fastr, Networks, Tools, Nodes
Activity Jobs
Entities Data

0 This picture and caption is taken from http://www.w3.org/TR/prov-o/ . “Copyright © 2011-2013 World Wide Web Consortium, (MIT, ERCIM,
Keio, Beihang). http://www.w3.org/Consortium/Legal/2015/doc-license”

28 Chapter 1. FASTR Documentation

https://www.python.org/dev/peps/pep-0008#prescriptive-naming-conventions
https://www.python.org/dev/peps/pep-0008#package-and-module-names
https://www.python.org/dev/peps/pep-0008#class-names
https://www.python.org/dev/peps/pep-0008#global-variable-names
https://www.python.org/dev/peps/pep-0008#method-names-and-instance-variables
https://en.wikipedia.org/wiki/Provenance
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://github.com/trungdong/prov
http://www.w3.org/TR/prov-o/
http://www.w3.org/Consortium/Legal/2015/doc-license

FASTR Documentation, Release 3.0.0

Usage
The provenance is stored in ProvDocument objects in pickles. The convenience command line tool fastr prov

can be used to extract the provenance in the PROV-N notation and can be serialized to PROV-JSON and PROV-XML.
The provenance document can also be vizualized using the fastr prov command line tool.

1.4 Command Line Tools

Fastr is shipped with a number of command line tools to perform common tasks and greatly simplify things such as
debugging. The list of command line tools that is included in Fastr:

command description

cat Print information from a job file

dump Dump the contents of a network run tempdir into a zip for remote assistance
execute Execute a fastr job file

extract_argparse | Create a stub for a Tool based on a python script using argparse

provenance Get PROV information from the result pickle.

pylint Dump the contents of a network run tempdir into a zip for remote assistance
run Run a Network from the commandline

sink Command line access to the IOPlugin sink

source Command line access to the IOPlugin source

test Run the tests of a tool to verify the proper function

trace Trace samples/sinks from a run

upgrade Print information from a job file

verify Verify fastr resources, at the moment only tool definitions are supported.
webapp Start the fastr webapp and open in a new browser tab

1.4.1 fastr cat

Extract selected information from the extra job info. The path is the selection of the data to retrieve. Every parts of the
path (separated by a /) is seen as the index for the previous object. So for example to get the stdout of a job, you could
use ‘fastr cat __fastr_extra_job_info__.json process/stdout’.

usage: fastr cat [~-h] __fastr_extra_job_info__.Jjson path

Positional Arguments

__fastr_extra_job_info__.json result file to cat

path path of the data to print

1.4.2 fastr dump

Create a dump of a network run directory that contains the most important information for debugging. This includes
a serialization of the network, all the job command and result files, the extra job information files and the provenance
files. No data files will be included, but note that if jobs get sensitive information passed via the command line this
will be included in the job files.

1.4. Command Line Tools 29

http://www.w3.org/TR/prov-n/
http://www.w3.org/Submission/prov-json/
http://www.w3.org/TR/prov-xml/

FASTR Documentation, Release 3.0.0

usage: fastr dump [-h] RUNDIR DUMP.zip

Positional Arguments
RUNDIR The run directory to dump
DUMP.zip The file to place the dump in
1.4.3 fastr execute

Execute a job from commandline.

usage: fastr execute [-h] [JOBFILE]

Positional Arguments

JOBFILE File of the job to execute (default ./__fastr_command__.pickle.gz)

1.4.4 fastr extract_argparse

Extract basic information from argparse.

usage: fastr extract_argparse [-h] SCRIPT.py TOOL.xml

Positional Arguments
SCRIPT.py Python script to inspect

TOOL.xml created Tool stub

1.4.5 fastr provenance

Export the provenance information from JSON to other formats or plot the provenance data as a graph.

usage: fastr provenance [-h] [-so SYNTAX OUT_FILE] [-sf SYNTAX_ FORMAT]
[-i INDENT] [-vo VISUALIZE_OUT FILE]
[RESULTFILE]

Positional Arguments

RESULTFILE File of the job to execute (default ./__fastr_prov__.json)

30 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Named Arguments

-so, --syntax-out-file Write the syntax to file.

-sf, --syntax-format Choices are: [json], provn or xml
Default: “json”

-i, --indent Indent size of the serialized documents.
Default: 2

-vo, --visualize-out-file Visualize the provenance. The most preferred format is svg. You can specify
any format pydot supports. Specify the format by postfixing the filename with an

extension.

1.4.6 fastr pylint

Run pylint in such a way that the output is written to a file

usage: fastr pylint [-h] ——output_file PYLINT.OUT

Named Arguments

--output_file The file to result in

1.4.7 fastr run

Execute a job or network from commandline.

usage: fastr run [-h] NETWORKFILE

Positional Arguments

NETWORKFILE File of the network to execute

1.4.8 fastr sink

executes an ioplugin

usage: fastr sink [-h] -1 INPUT [INPUT ...] -o OUTPUT [OUTPUT ...]
[-d DATATYPE [DATATYPE ...]]

Named Arguments

-i, --input The url to process (can also be a list)

-0, --output The output urls in vfs scheme (can also be a list and should be the same size as
—inurl)

-d, --datatype The datatype of the source/sink data to handle

1.4. Command Line Tools 31

FASTR Documentation, Release 3.0.0

1.4.9 fastr source

Executes an source command

usage: fastr source [-h] —-i INPUT [INPUT ...] -o OUTPUT [-d DATATYPE]
[-s SAMPLE_ID]

Named Arguments

-i, --input The url to process (can also be a list)

-0, --output The output url in vfs scheme

-d, --datatype The datatype of the source/sink data to handle
-s, --sample_id The sample_id of the source/sink data to handle

1.4.10 fastr test

Run a tests for a fastr resource.

usage: fastr test [-h] {tool,tools,network,networks}

Sub-commands:

tool

Test a single tool

fastr test tool [-h] TOOL

Positional Arguments
TOOL Tool to test or directory with tool reference data

tools

Test all tools known to fastr

fastr test tools [—h]

network

Test a single network

fastr test network [-h] NETWORK

32 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Positional Arguments

NETWORK The reference data to test the Network

networks

Test all network references inside subdirectories

fastr test networks [-h] [--result RESULT. json] REFERENCE

Positional Arguments

REFERENCE path of the directory containing subdirectories with reference data

Named Arguments

--result Werite the results of the test to a JSON file

1.4.11 fastr trace

Fastr trace helps you inspect the staging directory of the Network run and pinpoint the errors.

usage: fastr trace [-h] [--verbose] [-—-sinks [SINKS [SINKS ...]1]
[-—samples [SAMPLES [SAMPLES ...]11]
[__sink_data__.json]

Positional Arguments

__sink_data__.json result file to cat

Default: “/home/docs/checkouts/readthedocs.org/user_builds/fastr/checkouts/3.0.0/fastr/doc/__sink_data_

Named Arguments

--verbose, -v set verbose output for more details
Default: False
--sinks list results for specified sinks

--samples list result for all samples

1.4.12 fastr upgrade

Extract selected information from the extra job info. The path is the selection of the data to retrieve. Every parts of the
path (separated by a /) is seen as the index for the previous object. So for example to get the stdout of a job, you could
use ‘fastr cat __fastr_extra_job_info__.json process/stdout’.

1.4. Command Line Tools 33

FASTR Documentation, Release 3.0.0

usage: fastr upgrade [-h] NETWORK.py NEW.py

Positional Arguments

NETWORK.py Network creation file (in python) to upgrade
NEW.py location of the result file

1.4.13 fastr verify

Verify fastr resources, at the moment only tool definitionsare supported.

usage: fastr verify [-h] TYPE path

Positional Arguments

TYPE Possible choices: tool
Type of resource to verify (e.g. tool)

path path of the resource to verify

1.4.14 fastr webapp

Starts the fastr web client.

usage: fastr webapp [-h] [-d] [-o]

Named Arguments

-d, --debug Debug mode.
Default: False
-0, --openpage Open web page after start.

Default: False

1.5 Resource File Formats

This chapter describes the various files fastr uses. The function and format of the files is described allowing the user
to configure fastr and add DataTypes and Tools.

1.5.1 Config file

Fastr reads the config files from the following locations by default (in order):
¢ SFASTRHOME/config.py

e ~/.fastr/config.py

34 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Reading a new config file change or override settings, making the last config file read have the highest priority. All
settings have a default value, making config files and all settings within optional.

Example config file

Here is a minimal config file:

Enable debugging output
debug = False

Define the path to the tool definitions

tools_path = ['/path/to/tools',
'/path/to/other/tools'] + tools_path
types_path = ['/path/to/datatypes’,

'/path/to/other/datatypes'] + types_path

Specify what your preferred output types are.
preferred_types += ["NiftiImageFileCompressed",
"NiftiImageFile"]

Set the tmp mount
mounts['tmp'] = '/path/to/tmpdir’

Format

The config file is actually a python source file. The next syntax applies to setting configuration values:

Simple values
float_value = 1.0

int_value = 1
str_value = "Some value"
other_str_value = 'name'.capitalize()

List—1like values

list_value = ['over', 'ride', 'values']
other_list_value.prepend('first')
other_list_value.append('list')

Dict—-like values
dict_value = {'this': 1, 'is': 2, 'fixed': 3}
other_dict_value['added'] = 'this key'

Note: Dictionaries and list always have a default, so you can always append or assign elements to them and do not
have to create them in a config file. Best practice is to only edit them unless you really want to block out the earliers
config files.

Most operations will be assigning values, but for list and dict values a special wrapper object is used that allows
manipulations from the default. This limits the operations allowed.
List values in the config. py have the following supported operators/methods:

e+, add__and__radd__

e +=0r__ iadd___

1.5. Resource File Formats 35

FASTR Documentation, Release 3.0.0

* append
* prepend
¢ extend
Mapping (dict-like) values in the config. py have the following supported operators/methods:
* update

e [Jor__getitem_ ,_ setitem_and_ delitem_

Configuration fields

This is a table the known config fields on the system:

1.5.2 Tool description

Tools are the building blocks in the fastr network. To add new Tools to fastr, XML/json files containing a Tool
definition can be added. These files have the following layout:

Attribute Description
id The id of this Tool (used internally in fastr)
name The name of the Tool, for human readability
version The version of the Tool wrapper (not the binary)
url The url of the Tool wrapper
authors[] List of authors of the Tools wrapper
name Name of the author
email Email address of the author
url URL of the website of the author
tags tagl[] List of tags describing the Tool
command Description of the underlying command
version Version of the tool that is wrapped
url Website where the tools that is wrapped can be obtained
targets|[] Description of the target binaries/script of this Tool
os OS targeted (windows, linux, macos or * (for any)

arch Architecture targeted 32, 64 or * (for any)

Extra variables based on the target used, see Targets

description Description of the Tool

license License of the Tool, either full license or a clear name (e.g. LGPL, GPL
v2)

authors[] List of authors of the Tool (not the wrapper!)

name Name of the authors

email | Email address of the author

url URL of the website of the author

interface The interface definition see /nterfaces

help Help text explaining the use of the Tool

cite Bibtext of the Citation(s) to reference when using this Tool for a publi-
cation

36 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

1.6 Resource Reference

In this chapter we describe the different plugins bundled with Fastr (e.g. IOPlugins, ExecutionPlugins). The reference
is build automatically from code, so after installing a new plugin the documentation has to be rebuild for it to be
included in the docs.

1.6.1 CollectorPlugin Reference

CollectorPlugins are used for finding and collecting the output data of outputs part of a FastrInterface

scheme CollectorPlugin
JsonCollector JsonCollector
PathCollector PathCollector
StdoutCollector | StdoutCollector

JsonCollector
The JsonCollector plugin allows a program to print out the result in a pre-defined JSON format. It is then used as
values for fastr.
The working is as follows:
1. The location of the output is taken
If the location is None, go to step 5
The substitutions are performed on the location field (see below)

The location is used as a regular expression and matched to the stdout line by line

A

The matched string (or entire stdout if location is None) is loaded as a json
6. The data is parsed by set_result

The structure of the JSON has to follow the a predefined format. For normal Node s the format is in the form:

[valuel, value2, value3]

where the multiple values represent the cardinality.

For a FlowNodes the format is the form:

{
'sample_idl': [valuel, value2, value3],
'sample_1id2': [value4, valueb5, valueb]

}

This allows the tool to create multiple output samples in a single run.

PathCollector

The PathCollector plugin for the FastrInterface. This plugin uses the location fields to find data on the filesystem. To
use this plugin the method of the output has to be set to path

The general working is as follows:

1. The location field is taken from the output

1.6. Resource Reference 37

https://docs.python.org/3.7/library/re.html#re-syntax
https://docs.python.org/3.7/library/json.html#json.loads

FASTR Documentation, Release 3.0.0

2. The substitutions are performed on the location field (see below)
3. The updated location field will be used as a regular expression filter
4. The filesystem is scanned for all matching files/directory

The special substitutions performed on the location use the Format Specification Mini-Language Format Specification
Mini-Language. The predefined fields that can be used are:

* inputs, an objet with the input values (use like { inputs.image [0] }) The input contains the following
attributes that you can access:

— .directory for the directory name (use like input .image[0] .directory) The directory is the
same as the result of os.path.dirname

— .filename is the result of os.path.basename on the path

— .basename for the basename name (use like input.image [0] .basename) The basename is the
same as the result of os.path.basename and the extension stripped. The extension is considered to
be everything after the first dot in the filename.

— .extension for the extension name (use like input.image[0] .extension)

* output, an object with the output values (use like { outputs.result [0] }) It contains the same attributes
as the input

— special.cardinality, the index of the current cardinality
— special.extension, is the extension for the output DataType

Example use:

<output ... method="path" location=" /TransformParameters.
. . "/>

Given the output directory . /nodeid/sampleid/result, the second sample in the output and filetype with a
t xt extension, this would be translated into:

<output ... method="path" location="./nodeid/sampleid/result/TransformParameters.l.
—txt>

StdoutCollector
The StdoutCollector can collect data from the stdout stream of a program. It filters the st dout line by line matching
a predefined regular expression.
The general working is as follows:
1. The location field is taken from the output
2. The substitutions are performed on the location field (see below)
3. The updated location field will be used as a regular expression filter
4. The stdout is scanned line by line and the regular expression filter is applied

The special substitutions performed on the location use the Format Specification Mini-Language Format Specification
Mini-Language. The predefined fields that can be used are:

e inputs, an objet with the input values (use like {inputs.image[0]})
* outputs, an object with the output values (use like {outputs.result[0]})

¢ special which has two subfields:

38 Chapter 1. FASTR Documentation

https://docs.python.org/3.7/library/re.html#re-syntax
https://docs.python.org/3.7/library/string.html#formatspec
https://docs.python.org/3.7/library/string.html#formatspec
https://docs.python.org/3.7/library/re.html#re-syntax
https://docs.python.org/3.7/library/re.html#re-syntax
https://docs.python.org/3.7/library/string.html#formatspec
https://docs.python.org/3.7/library/string.html#formatspec

FASTR Documentation, Release 3.0.0

— special.cardinality, the index of the current cardinality

— special.extension, is the extension for the output DataType

Note: because the plugin scans line by line, it is impossible to catch multi-line output into a single value

1.6.2 ExecutionPlugin Reference
This class is the base for all Plugins to execute jobs somewhere. There are many methods already in place for taking
care of stuff.

There are fall-backs for certain features, but if a system already implements those it is usually preferred to skip the
fall-back and let the external system handle it. There are a few flags to enable disable these features:

* cls.SUPPORTS_CANCEL indicates that the plugin can cancel queued jobs

* cls.SUPPORTS_HOLD_RELEASE indicates that the plugin can queue jobs in a hold state and can release
them again (if not, the base plugin will create a hidden queue for held jobs). The plugin should respect the
Job.status == JobState.hold when queueing jobs.

* cls.SUPPORTS_DEPENDENCY indicate that the plugin can manage job dependencies, if not the base plugin
job dependency system will be used and jobs with only be submitted when all dependencies are met.

* cls.CANCELS_DEPENDENCIES indicates that if a job is cancelled it will automatically cancel all jobs de-
pending on that job. If not the plugin traverse the dependency graph and kill each job manual.

Note: If a plugin supports dependencies it is assumed that when a job gets cancelled, the depending job also
get cancelled automatically!

Most plugins should only need to redefine a few abstract methods:
e init__ the constructor
* cleanup a clean up function that frees resources, closes connections, etc
e _queue_ job the method that queues the job for execution
Optionally an extra job finished callback could be added:
* _job_finished extra callback for when a job finishes
If SUPPORTS_CANCEL is set to True, the plugin should also implement:
e _cancel_job cancels a previously queued job
If SUPPORTS_HOLD_RELEASE is set to True, the plugin should also implement:
* _hold_job hold_job a job that is currently held
e _release_job releases a job that is currently held
If SUPPORTED_DEPENDENCY is set to True, the plugin should:
* Make sure to use the Job.hold_jobs as a list of its dependencies

Not all of the functions need to actually do anything for a plugin. There are examples of plugins that do not really
need a cleanup, but for safety you need to implement it. Just using a pass for the method could be fine in such a
case.

1.6. Resource Reference 39

FASTR Documentation, Release 3.0.0

Warning: When overwriting other functions, extreme care must be taken not to break the plugins working, as
there is a lot of bookkeeping that can go wrong.

scheme ExecutionPlugin
BlockingExecution BlockingExecution
DRMAAExecution DRMAAEXxecution
LinearExecution LinearExecution
ProcessPoolExecution | ProcessPoolExecution
RQExecution RQExecution
SlurmExecution SlurmExecution
StrongrExecution StrongrExecution

BlockingExecution
The blocking execution plugin is a special plugin which is meant for debug purposes. It will not queue jobs but

immediately execute them inline, effectively blocking fastr until the Job is finished. It is the simplest execution plugin
and can be used as a template for new plugins or for testing purposes.

DRMAAEXxecution

A DRMAA execution plugin to execute Jobs on a Grid Engine cluster. It uses a configuration option for selecting the
queue to submit to. It uses the python drmaa package.

Note: To use this plugin, make sure the drmaa package is installed and that the execution is started on an SGE
submit host with DRMAA libraries installed.

Note: This plugin is at the moment tailored to SGE, but it should be fairly easy to make different subclasses for
different DRMAA supporting systems.

Configuration fields
name type| description default
drmaa_queue str | The default queue to use for jobs send to the scheduler ‘week’
drmaa_max_jobs int | The maximum jobs that can be send to the scheduler at the same time | O

(0 for no limit)

drmaa_engine str | The engine to use (options: grid_engine, torque ‘grid_enging’
dr- int | The interval in which the job checker will startto check for stale jobs | 900
maa_job_check_interval

LinearExecution

An execution engine that has a background thread that executes the jobs in order. The queue is a simple FIFO queue
and there is one worker thread that operates in the background. This plugin is meant as a fallback when other plugins
do not function properly. It does not multi-processing so it is safe to use in environments that do no support that.

40 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

ProcessPoolExecution

A local execution plugin that uses multiprocessing to create a pool of worker processes. This allows fastr to execute
jobs in parallel with true concurrency. The number of workers can be specified in the fastr configuration, but the
default amount is the number of cores - 1 with a minimum of 1.

Warning: The ProcessPoolExecution does not check memory requirements of jobs and running many workers
might lead to memory starvation and thus an unresponsive system.

Configuration fields
name type | description default
process_pool_worker_number | int Number of workers to use in a process pool | 3

RQEXxecution

A execution plugin based on Redis Queue. Fastr will submit jobs to the redis queue and workers will peel the jobs
from the queue and process them.

This system requires a running redis database and the database url has to be set in the fastr configuration.

Note: This execution plugin required the redis and rq packages to be installed before it can be loaded properly.

Configuration fields
name type | description default
rq_host str The url of the redis serving the redis queue | ‘redis://localhost:6379/0°
rq_queue | str The redis queue to use ‘default’

SlurmExecution

Configuration fields
name type | description de-
fault
slurm_job_check_interval | int The interval in which the job checker will startto check for stale jobs | 30
slurm_partition str The slurm partition to use .

StrongrExecution

A execution plugin based on Redis Queue. Fastr will submit jobs to the redis queue and workers will peel the jobs
from the queue and process them.

This system requires a running redis database and the database url has to be set in the fastr configuration.

Note: This execution plugin required the redis and rqg packages to be installed before it can be loaded properly.

1.6. Resource Reference 41

FASTR Documentation, Release 3.0.0

1.6.3 FlowPlugin Reference

Plugin that can manage an advanced data flow. The plugins override the execution of node. The execution receives
all data of a node in one go, so not split per sample combination, but all data on all inputs in one large payload. The
flow plugin can then re-order the data and create resulting samples as it sees fits. This can be used for all kinds of
specialized data flows, e.g. cross validation.

To create a new FlowPlugin there is only one method that needs to be implemented: execute.

scheme FlowPlugin
CrossValidation | CrossValidation

CrossValidation

Advanced flow plugin that generated a cross-validation data flow. The node need an input with data and an input
number of folds. Based on that the outputs test and train will be supplied with a number of data sets.

1.6.4 10Plugin Reference

IOPlugins are used for data import and export for the sources and sinks. The main use of the TOPlugins is
during execution (see Execution). The TOP1ugins can be accessed via fastr.ioplugins, but generally there
should be no need for direct interaction with these objects. The use of is mainly via the URL used to specify source
and sink data.

scheme IOPlugin
CommaSeperated ValueFile CommaSeperatedValueFile
FileSystem FileSystem

HTTPPlugin HTTPPlugin

Null Null

Reference Reference

S3Filesystem S3Filesystem
VirtualFileSystem VirtualFileSystem
VirtualFileSystemRegularExpression | VirtualFileSystemRegularExpression
VirtualFileSystemValueList VirtualFileSystemValueList
XNATStorage XNATStorage

CommaSeperatedValueFile
The CommaSeperated ValueFile an expand-only type of IOPlugin. No URLs can actually be fetched, but it can expand
a single URL into a larger amount of URLs.

The csv:// URLisavfs:// URL with a number of query variables available. The URL mount and path should
point to a valid CSV file. The query variable then specify what column(s) of the file should be used.

The following variable can be set in the query:

42 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

variable usage

value the column containing the value of interest, can be int for index or string for key

id the column containing the sample id (optional)

header indicates if the first row is considered the header, can be t rue or false (optional)

delimiter the delimiter used in the csv file (optional)

quote the quote character used in the csv file (optional)

reformat a reformatting string so that value = reformat.format (value) (used before rela-
tive_path)

rela- indicates the entries are relative paths (for files), can be t rue or false (optional)

tive_path

The header is by default false if the neither the value and id are set as a string. If either of these are a string, the
header is required to define the column names and it automatically is assumed t rue

The delimiter and quota characters of the file should be detected automatically using the Sniffer, but can be forced
by setting them in the URL.

Example of valid csv URLs:

Use the first column in the file (no header row assumed)
csv://mount/some/dir/file.csv?value=0

Use the images column in the file (first row is assumed header row)
csv://mount/some/dir/file.csv?value=images

Use the segmentations column in the file (first row is assumed header row)
and use the id column as the sample id
csv://mount/some/dir/file.csv?value=segmentations&id=id

Use the first column as the id and the second column as the value
and skip the first row (considered the header)
csv://mount/some/dir/file.csv?value=1&id=0&header=true

Use the first column and force the delimiter to be a comma
csv://mount/some/dir/file.csv?value=0&delimiter=,

FileSystem

The FileSystem plugin is create to handle file: // type or URLs. This is generally not a good practice, as this is
not portable over between machines. However, for test purposes it might be useful.

The URL scheme is rather simple: file://host/path (see wikipedia for details)

We do not make use of the host part and at the moment only support localhost (just leave the host empty) leading to
file:/// URLs.

Warning: This plugin ignores the hostname in the URL and does only accept driver letters on Windows in the
form c:/

1.6. Resource Reference 43

https://docs.python.org/3.7/library/csv.html#csv.Sniffer
http://en.wikipedia.org/wiki/File_URI_scheme

FASTR Documentation, Release 3.0.0

HTTPPlugin

Warning: This Plugin is still under development and has not been tested at all. example url: https://server.io/
path/to/resource

Null

The Null plugin is create to handle null:// type or URLs. These URLs are indicating the sink should not do
anything. The data is not written to anywhere. Besides the scheme, the rest of the URL is ignored.

Reference

The Reference plugin is create to handle ref: // type or URLs. These URLSs are to make the sink just write a simple
reference file to the data. The reference file contains the DataType and the value so the result can be reconstructed.
It for files just leaves the data on disk by reference. This plugin is not useful for production, but is used for testing
purposes.

S3Filesystem

Warning: As this IOPlugin is under development, it has not been thoroughly tested.

example url: s3://bucket.server/path/to/resource

VirtualFileSystem

The virtual file system class. This is an IOPlugin, but also heavily used internally in fastr for working with directories.
The VirtualFileSystem uses the vfs: // url scheme.

A typical virtual filesystem url is formatted as vfs: //mountpoint/relative/dir/from/mount .ext

Where the mountpoint is defined in the Config file. A list of the currently known mountpoints can be found in the
fastr.config object

>>> fastr.config.mounts

{'example_data': '/home/username/fastr-feature-documentation/fastr/fastr/examples/data
! ,

'home': '/home/username/',

'tmp': '/home/username/FastrTemp'}

This shows that a url with the mount home such as vfs://home/tempdir/testfile.txt would be translated
into /home /username/tempdir/testfile.txt.

There are a few default mount points defined by Fastr (that can be changed via the config file).

mountpoint | default location

home the users home directory (expanduser ('~/"))

tmp the fastr temprorary dir, defaults to tempfile.gettempdir ()
example_data | the fastr example data directory, defaults SFASTRDIR/example/data

44 Chapter 1. FASTR Documentation

https://server.io/path/to/resource
https://server.io/path/to/resource
https://docs.python.org/3.7/library/os.path.html#os.path.expanduser

FASTR Documentation, Release 3.0.0

VirtualFileSystemRegularExpression
The VirtualFileSystemValueList an expand-only type of IOPlugin. No URLSs can actually be fetched, but it can expand
a single URL into a larger amount of URLSs.

A vfsregex:// URL is a vfs URL that can contain regular expressions on every level of the path. The regular
expressions follow the re module definitions.

An example of a valid URLs would be:

visregex://tmp/network_dir/.*/.x/__fastr_result__ .pickle.gz
visregex://tmp/network_dir/nodeX/ (?P<id>.x)/__ _fastr_result_ .pickle.gz

The first URL would result in all the __fastr_result__ .pickle.gz in the working directory of a Network.
The second URL would only result in the file for a specific node (nodeX), but by adding the named group id using
(?P<id>.) the sample id of the data is automatically set to that group (see Regular Expression Syntax under the
special characters for more info on named groups in regular expression).

Concretely if we would have a directory vfs://mount /somedir containing:

image_1/Image.nii
image_2/image.nii
image_3/anotherimage.nii
image_5/inconsistentnamingftw.nii

we could match these files using vfsregex://mount/somedir/ (?P<id>image_\d+) /.x\.nii which
would result in the following source data after expanding the URL:

{'"image_1': 'vfs://mount/somedir/image_1/Image.nii"',
'image_2': 'vfs://mount/somedir/image_2/image.nii’',
'"image_3': 'vfs://mount/somedir/image_3/anotherimage.nii’',
'image_5': 'vfs://mount/somedir/image_5/inconsistentnamingftw.nii'}

Showing the power of this regular expression filtering. Also it shows how the ID group from the URL can be used to
have sensible sample ids.

Warning: due to the nature of regexp on multiple levels, this method can be slow when having many matches on
the lower level of the path (because the tree of potential matches grows) or when directories that are parts of the
path are very large.

VirtualFileSystemValueList

The VirtualFileSystem ValueList an expand-only type of [OPlugin. No URLSs can actually be fetched, but it can expand
a single URL into a larger amount of URLs. A vfslist:// URL basically is a url that points to a file using vfs.
This file then contains a number lines each containing another URL.

If the contents of a file vEs: //mount/some/path/contents would be:

vfs://mount/some/path/filel.txt
vfs://mount/some/path/file2.txt
vfs://mount/some/path/file3.txt
vfs://mount/some/path/file4d.txt

Then using the URL vfslist://mount/some/path/contents as source data would result in the four files
being pulled.

1.6. Resource Reference 45

https://docs.python.org/3.7/library/re.html#module-re
https://docs.python.org/3.7/library/re.html#re-syntax

FASTR Documentation, Release 3.0.0

Note: The URLs in a vfslist file do not have to use the vfs scheme, but can use any scheme known to the Fastr
system.

XNATStorage

Warning: As this IOPlugin is under development, it has not been thoroughly tested.

The XNATStorage plugin is an IOPlugin that can download data from and upload data to an XNAT server. It uses its
own xnat :// URL scheme. This is a scheme specific for this plugin and though it looks somewhat like the XNAT
rest interface, a different type or URL.

Data resources can be access directly by a data url:

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001l/experiments/
—experiment001/scans/Tl/resources/DICOM

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/experiments/
<»*_BRAIN/scans/Tl/resources/DICOM

In the second URL you can see a wildcard being used. This is possible at long as it resolves to exactly one item.

The id query element will change the field from the default experiment to subject and the 1abel query element sets
the use of the label as the fastr id (instead of the XNAT id) to True (the default is False)

To disable ht tps transport and use http instead the query string can be modified to add insecure=true. This
will make the plugin send requests over http:

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/experiments/
—*_BRAIN/scans/Tl/resources/DICOM?insecure=true

For sinks it is import to know where to save the data. Sometimes you want to save data in a new assessor/resource
and it needs to be created. To allow the Fastr sink to create an object in XNAT, you have to supply the type as a query
parameter:

xnat://xnat.bmia.nl/data/archive/projects/sandbox/subjects/S01/experiments/_BRAIN/
—,assessors/test_assessor/resources/IMAGE/files/image.nii.gz?resource_
—type=xnat:resourceCatalog&assessor_type=xnat:qcAssessmentData

Valid options are: subject_type, experiment_type, assessor_type, scan_type, and resource_type.

If you want to do a search where multiple resources are returned, it is possible to use a search url:

xnat://xnat.example.com/search?projects=sandbox&subjects=subject [0-9] [0-9] [0-9]&
—experiments=x_BRAIN&scans=Tl&resources=DICOM

This will return all DICOMs for the T1 scans for experiments that end with _BRAIN that belong to a subjec-
tXXX where XXX is a 3 digit number. By default the ID for the samples will be the experiment XNAT ID (e.g.
XNAT_E00123). The wildcards that can be the used are the same UNIX shell-style wildcards as provided by the
module fnmatch.

It is possible to change the id to a different fields id or label. Valid fields are project, subject, experiment, scan, and
resource:

xnat://xnat.example.com/search?projects=sandbox&subjects=subject [0-9] [0-9] [0-9]&
—experiments=+_BRAIN&scans=Tl&resources=DICOM&id=subject&label=true

46 Chapter 1. FASTR Documentation

https://docs.python.org/3.7/library/fnmatch.html#module-fnmatch

FASTR Documentation, Release 3.0.0

The following variables can be set in the search query:

variable default usage

projects * The project(s) to select, can contain wildcards (see fnmatch)

subjects * The subject(s) to select, can contain wildcards (see fnmatch)

experiments | * The experiment(s) to select, can contain wildcards (see fnmatch)

scans * The scan(s) to select, can contain wildcards (see fnmatch)

resources * The resource(s) to select, can contain wildcards (see fnmatch)

id experiment | What field to use a the id, can be: project, subject, experiment, scan, or resource
label false Indicate the XNAT label should be used as fastr id, options t rue or false
insecure false Change the url scheme to be used to http instead of https

verify true (Dis)able the verification of SSL certificates

regex false Change search to use regex re.match () instead of fnmatch for matching
overwrite false Tell XNAT to overwrite existing files if a file with the name is already present

For storing credentials the . net rc file can be used. This is a common way to store credentials on UNIX systems. It
is required that the file is only accessible by the owner only or a Net rcParseError will be raised. A netrc file is
really easy to create, as its entries look like:

machine xnat.example.com
login username
password secretl23

See the net rc module or the GNU inet utils website for more information about the . net rc file.

Note: On windows the location of the netrc file is assumed to be os.path.expanduser ('~/_netrc'). The
leading underscore is because windows does not like filename starting with a dot.

Note: For scan the label will be the scan type (this is initially the same as the series description, but can be updated
manually or the XNAT scan type cleanup).

Warning: labels in XNAT are not guaranteed to be unique, so be careful when using them as the sample ID.

For background on XNAT, see the XNAT API DIRECTORY for the REST API of XNAT.

1.6.5 Interface Reference

Abstract base class of all Interfaces. Defines the minimal requirements for all Interface implementations.

scheme Interface
FastrInterface FastrInterface
FlowInterface FlowlInterface
Nipypelnterface | Nipypelnterface

1.6. Resource Reference 47

https://docs.python.org/3.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/3.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/3.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/3.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/3.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/3.7/library/re.html#re.match
https://docs.python.org/3.7/library/netrc.html#module-netrc
http://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html#The-_002enetrc-file
https://wiki.xnat.org/display/XNAT16/XNAT+REST+API+Directory

FASTR Documentation, Release 3.0.0

Fastrinterface

The default Interface for fastr. For the command-line Tools as used by fastr. It build a commandline call based on the

input/output specification.

The fields that can be set in the interface:

Attribute Description
id The id of this Tool (used internally
in fastr)
inputs|[] List of Inputs that can are accepted
by the Tool
id ID of the Input
name Longer name of the Input (more hu-
man readable)
datatype The ID of the DataType of the In-
put!
enum/] List of possible values for an Enum-
Type (created on the fly by fastr)!
prefix Commandline prefix of the Input
(e.g. —in, -1)
cardinality Cardinality of the Input
repeat_prefix Flag indicating if for every value of
the Input the prefix is repeated
required Flag indicating if the input is re-
quired
nospace Flag indicating if there is no space
between prefix and value (e.g.
—in=val)
format For DataTypes that have multiple
representations, indicate which one
to use
default Default value for the Input
description Long description for an input
outputs|] List of Outputs that are generated by
the Tool (and accessible to fastr)
id ID of the Output
name Longer name of the Output (more
human readable)
datatype The ID of the DataType of the Out-
put1
enum|] List of possible values for an Enum-
Type (created on the fly by fastr)’
prefix Commandline prefix of the Output
(e.g. —out, -0)
cardinality Cardinality of the Output
repeat_prefix Flag indicating if for every value of
the Output the prefix is repeated
required Flag indicating if the input is re-
quired
nospace Flag indicating if there is no space
between prefix and value (e.g.
—out=val)
Continued on next page
48 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Table 1.1 — continued from previous page

Attribute Description
format For DataTypes that have multiple
representations, indicate which one
to use
description Long description for an input
action Special action (defined per

DataType) that needs to be per-
formed before creating output value
(e.g. ‘ensure’ will make sure an
output directory exists)
automatic Indicate that output doesn’t require
commandline argument, but is cre-
ated automatically by a Tool”
method The collector plugin to use for the
gathering automatic output, see the
Collector plugins

location Definition where to an auto-
matically, usage depends on the
method?

FlowInterface

The Interface use for AdvancedFlowNodes to create the advanced data flows that are not implemented in the fastr.
This allows nodes to implement new data flows using the plugin system.

The definition of FlowInterfaces are very similar to the default FastrInterfaces.

Note: A flow interface should be using a specific FlowPlugin

Nipypelnterface

Experimental interfaces to using nipype interfaces directly in fastr tools, only using a simple reference.

To create a tool using a nipype interface just create an interface with the correct type and set the nipype argument to
the correct class. For example in an xml tool this would become:

<interface class="Nipypelnterface">
<nipype_class>nipype.interfaces.elastix.Registration</nipype_class>
</interface>

Note: To use these interfaces nipype should be installed on the system.

Warning: This interface plugin is basically functional, but highly experimental!

! datatype and enum are conflicting entries, if both specified datatype has presedence
2 More details on defining automatica output are given in [TODO]

1.6. Resource Reference 49

FASTR Documentation, Release 3.0.0

1.6.6 ReportingPlugin Reference

Base class for all reporting plugins. The plugin has a number of methods that can be implemented that will be called
on certain events. On these events the plugin can inspect the presented data and take reporting actions.

scheme ReportingPlugin
ElasticsearchReporter | ElasticsearchReporter
PimReporter PimReporter
SimpleReport SimpleReport
ElasticsearchReporter
NOT DOCUMENTED!
Configuration fields
name type | description default
elasticsearch_host str The elasticsearch host to report to "
elasticsearch_index | str The elasticsearch index to store data in ‘fastr’
elasticsearch_debug | bool | Setup elasticsearch debug mode to send stdout stderr on job succes | False

PimReporter

NOT DOCUMENTED!

Configuration fields
name type | description default
pim_host str The PIM host to report to ©
pim_update_interval | float | The interval in which to send jobs to PIM 2.5
pim_batch_size int Maximum number of jobs that can be send to PIM in a single interval | 100
pim_debug bool | Setup PIM debug mode to send stdout stderr on job succes False

SimpleReport

NOT DOCUMENTED!

1.6.7 Target Reference

The abstract base class for all targets. Execution with a target should follow the following pattern:

>>> with Target () as target:
target.run_commmand(['sleep', '10'])

The Target context operator will set the correct paths/initialization. Within the context command can be ran and when
leaving the context the target reverts the state before.

50 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

scheme Target
DockerTarget DockerTarget
LocalBinaryTarget | LocalBinarylarget
MacroTarget MacroTarget
Singularity Target SingularityTarget

DockerTarget

A tool target that is located in a Docker images. Can be run using docker-py. A docker target only need two variables:
the binary to call within the docker container, and the docker container to use.

{

"arch": "*",

Ilosll: "*H,

"binary": "bin/test.py",
"docker_image": "fastr/test"

<target os="x" arch="x" binary="bin/test.py" docker_image="fastr/test">

LocalBinaryTarget

A tool target that is a local binary on the system. Can be found using environmentmodules or a path on the exe-
cuting machine. A local binary target has a number of fields that can be supplied:

L]

binary (required): the name of the binary/script to call, can also be called bin for backwards
compatibility.

modules: list of modules to load, this can be environmentmodules or Imod modules. If modules are
given, the paths, environment_variables and initscripts are ignored.

paths: a list of paths to add following the structure {"value": "/path/to/dir", "type":
"bin"}. The types can be bin if the it should be added to $PATH or 1ib if it should be added to te
library path (e.g. SLD_LIBRARY_PATH for linux).

environment_variables: adictionary of environment variables to set.
initscript: alist of script to run before running the main tool

interpreter: the interpreter to use to call the binary e.g. python

The LocalBinaryTarget will first check if there are modules given and the module subsystem is loaded. If that
is the case it will simply unload all current modules and load the given modules. If not it will try to set up the
environment itself by using the following steps:

1.
2.
3.

4.

Prepend the bin paths to $PATH
Prepend the lib paths to the correct environment variable

Setting the other environment variables given ($PATH and the system library path are ignored and cannot
be set that way)

Call the initscripts one by one

The definition of the target in JSON is very straightforward:

1.6. Resource Reference 51

FASTR Documentation, Release 3.0.0

{
"binary": "bin/test.py",
"interpreter": "python",
"paths": [
{
"type": "bin",
"value": "vfs://apps/test/bin"
}I
{
"type": "lib",
"value": "./1ib"
}
]I
"environment_variables": ({
"othervar": 42,
"short_var": 1,
"testvar": "valuel"
}I
"initscripts": |
"bin/init.sh"
]I
"modules": ["elastix/4.8"]
}

In XML the definition would be in the form of:

<target os="linux" arch="x" modules="elastix/4.8" bin="bin/test.py" interpreter=
—"python">
<paths>
<path type="bin" value="vfs://apps/test/bin" />
<path type="1ib" value="./lib" />
</paths>
<environment_variables short_var="1">
<testvar>valuel</testvar>
<othervar>42</othervar>
</environment_variables>
<initscripts>
<initscript>bin/init.sh</initscript>
</initscripts>
</target>

MacroTarget

A target for MacroNodes. This target cannot be executed as the MacroNode handles execution differently. But this
contains the information for the MacroNode to find the internal Network.

SingularityTarget

A tool target that is run using a singularity container, see the singulary website

* binary (required): the name of the binary/script to call, can also be called bin for backwards compati-
bility.

* container (required): the singularity container to run, this can be in url form for singularity pull
or as a path to a local container

52 Chapter 1. FASTR Documentation

http://singularity.lbl.gov/

FASTR Documentation, Release 3.0.0

e interpreter: the interpreter to use to call the binary e.g. python

1.7 Development and Design Documentation

In this chapter we will discuss the design of Fastr in more detail. We give pointers for development and add the design
documents as we currently envision Fastr. This is both for people who are interested in the Fastr develop and for
current developers to have an archive of the design decision agreed upon.

1.7.1 Sample flow in Fastr

The current Sample flow is the following:

Output

Link

Sublnput

Input

InputGroup

NodeRun

ContainsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

selects cardinality

collapse + expand (changes cardinality and dimensions)

direct forward

broadcast matching (combine samples in cardinality)

broadcast matching (combine samples in payload)

combines payloads (plugin based, e.g. cross product)

The idea is that we make a common interface for all classes that are related to the flow of Samples. For this we
propose the following mixin classes that provide the interface and allow for better code sharing. The basic structure

1.7. Development and Design Documentation

53

FASTR Documentation, Release 3.0.0

of the classes is given in the following diagram:

HasDimensions

dimensions

+ size
+ dimnames

HasSamples

__getitem__()

+ __contains__
+ _iter__

+ iteritems()
+ items()

+ indexes

+ ids

ContainsSamples

ForwardsSamples

samples

+ _getitem__()
+ _ setitem_ ()
+ dimensions

source
index_to_target
index_to_source
combine_samples
combine_dimensions

+ _ getitem__
+ dimensions

The abstract and mixin methods are as follows:

54

Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

ABC Inherits from Abstract Methods Mixin methods
HasDimensions
dimensions size
dimnames
HasSamples HasDimensions
__getitem_ __contains___
__iter_
iteritems
items
indexes
ids
ContainsSamples HasSamples
samples __getitem_
__setitem_
dimensions
ForwardsSamples HasSamples
source __getitem_
index_to_target dimensions
index_to_source
combine_samples
combine_dimensions

Note: Though the flow is currently working like this, the mixins are not yet created.

1.7.2 Network Execution

The network execution should contain a number of steps:

* Network
— Creates a NetworkRun based on the current layout

* NetworkRun
— Transform the Network (possibly joining Nodes of certain interface into a combined NodeRun etc)
— Start generation of the Job Direct Acyclic Graph (DAG)

¢ SchedulingPlugin
— Prioritize Jobs based on some predefined rules
— Combine certain Jobs to improve efficiency (e.g. minimize i/o on a grid)

* ExecutionPlugin

1.7. Development and Design Documentation 55

FASTR Documentation, Release 3.0.0

— Run a (list of) Jobs. If there is more than one jobs, run them sequentially on same execution host using a
local temp for intermediate files.

— On finished callback: Updated DAG with newly ready jobs, or remove cancelled jobs

This could be visualized as the following loop:

Network

reates

NetworkRun

executes

NodeRun creates

adds jobs
4

JobDAG callback

analyzes and selects jobs

SchedulingPlugin

(list of) Jobs to execute

ExecutionPlugin

The callback of the ExecutionPlugin to the NetworkRun would trigger the execution of the relevant
NodeRuns and the addition of more Jobs to the JobDAG.

56 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Note: The Job DAG should be thread-safe as it could be both read and extended at the same time.

Note: If a list of jobs is send to the ExecutionPlugin to be run as on Job on an external execution platform, the
resources should be combined as follows: memory=max, cores=max, runtime=sum

Note: If there are execution hosts that have mutliple cores the Execut ionPlugin should manage this (for example
by using pilot jobs). The SchedulingPlugin creates units that should be run sequentially on the resources noted
and will not attempt parallelization

A NetworkRun would be contain similar information as the Network but not have functionality for edit-
ting/changing it. It would contain the functionality to execute the Network and track the status and samples. This
would allow Network .execute to create multiple concurent runs that operate indepent of each other. Also edit-
ting a Net work after the run started would have no effect on that run.

Note: This is a plan, not yet implemented

Note: For this to work, it would be important for a Jobs to have forward and backward dependency links.

SchedulingPlugins

The idea of the plugin is that it would give a priority on Jobs created by a Network. This could be done based on
different strategies:

* Based on (sorted) sample id’s, so that one sample is always prioritized over others. The idea is that samples are
process as much as possible in order, finishing the first sample first. Only processing other samples if there is
left-over capacity.

* Based on distance to a (particular) Sink. This is to generate specific results as quick as possible. It would not
focus on specific samples, but give priority to whatever sample is closest to being finished.

* Based on the distance to from a Souce. Based on the sign of the weight it would either keep all samples on
the same stage as much as possible, only progressing to a new NodeRun when all samples are done with the
previous NodeRun, or it would push samples with accelerated rates.

Additionally it will group Jobs to be executed on a single host. This could reduce i/o and limited the number of jobs
an external scheduler has to track.

Note: The interface for such a plugin has not yet been established.

1.7.3 Secrets

“Something that is kept or meant to be kept unknown or unseen by others.”

1.7. Development and Design Documentation 57

FASTR Documentation, Release 3.0.0

Using secrets

Fastr IOPlugins that need authentication data should use the Fastr SecretService for retrieving such data. The Secret-
Service can be used as follows.

from fastr.utils.secrets import SecretService
from fastr.utils.secrets.exceptions import CouldNotRetrieveCredentials

secret_service = SecretService ()

try:

password = secret_service.find _password_for_user ('testserver.lan:9000', 'john-doe')
except CouldNotRetrieveCredentials:

the password was not found

pass

Implementing a SecretProvider

A SecretProvider is implemented as follows:
1. Create a file in fastr/utils/secrets/providers/<yourprovidername>.py
2. Use the template below to write your SecretProvider
3. Add the secret provider to fastr/utils/secrets/providers/__init__.py

4. Add the secret provider to fastr/utils/secrets/secretservice.py: import it and add it to the array in function
_init_providers

from fastr.utils.secrets.secretprovider import SecretProvider
from fastr.utils.secrets.exceptions import CouldNotRetrieveCredentials,
—CouldNotSetCredentials, CouldNotDeleteCredentials, NotImplemented

try:
this is where libraries can be imported
we don't want fastr to crash if a specific
library is unavailable
import my-libary
except (ImportError, ValueError) as e:
pass

class KeyringProvider (SecretProvider) :
def _ init_ (self):
if libraries are imported in the code above
we need to check if import was succesfull
if it was not, raise a RuntimeError
so that FASTR ignores this SecretProvider
if 'my-library' not in globals():
raise RuntimeError ("my-library module required")

def get_password_for_user (self, machine, username) :
This function should return the password as a string
or raise a CouldNotRetrieveCredentials error if the password

In the event that this function is unsupported a

#

#

is not found.

#

NotImplemented exception should be thrown

(continues on next page)

58 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

(continued from previous page)

raise NotImplemented ()

def set_password_for_user(self, machine, username, password):

This function should set the password for a specified
machine + user. If anything goes wrong while setting

the password a CouldNotSetCredentials error should be raised.
In the event that this function is unsupported a
NotImplemented exception should be thrown

raise NotImplemented()

T

def del_password_for_user (self, machine, username):

This function should delete the password for a specified
machine + user. If anything goes wrong while setting

the password a CouldNotDeleteCredentials error should be raised.
In the event that this function is unsupported a

NotImplemented exception should be thrown

raise NotImplemented()

Mo oW W W

1.8 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning

1.8.1 3.0.0 - 2019-03-05

Changed

Now ported to Python 3.6+ (Python 2 is no longer supported!)

New public API which is not fully compatible with fastr 2.x, the changes are small. The new API will be
guaranteed in next minor version upgrades and is considered to be stable.

Clear way of defining resource limits for Nodes in a Network using the ResourceLimit class.

The datatype and cardinality of inputs of a tool are now checked before the tool is to be executed as an extra
safety.

Dimensions are drawn by default in network.draw

The api now accepts types other than Output, list, tuple when creating a link. When a single value is given it is
assumedly a constant from the network definition.

Drawing a network will not create temporary .dot files anymore

Sinkdata can be a string, it that case it will be the same string for all sink nodes so a {node} substitution should
be used in the template

Make the xnat ioplugin use xnat+http:// and xnat+https:// url schemes in favour of xnat:// with ?insecure=...
(old behaviour will also work for now)

Complete rewrite of PIM plugin (PIMReporter) making use of the new Reporter plugin infrastructure. It also
caches all communication with PIM to be resilient against connection interruptions.

1.8.

Changelog 59

http://keepachangelog.com/
http://semver.org/

FASTR Documentation, Release 3.0.0

Added

* fastr upgrade command to automatically upgrade a network creation file from fastr 2.x to fastr 3.x APIL

http(s) IOPlugin for downloading files via http(s)

* network.draw now has a flag to hide the unconnected inputs and output of a node. The unconnected in-
puts/outputs are hidden by default.

* Reporting plugins, Fastr now exposes a number of message hooks which can be listened to by Reporter plugins.

Fixed

* Fixed some bugs with drmaa communication (more safeties added)
* Fixed a bug in the MacroNode update function which could cause networks with MacroNodes to be invalid

¢ The margins and font size of the network.draw graph rendering are set a bit wider and smaller (resp.) to avoid
excessive text overflow.

¢ Fixed bug in provenance which did not properly chain the provenance of subsequent jobs.

1.8.2 2.1.2 - 2018-10-24

Added

* Allow overriding the timestamp of the network execution

Changed

» Updated PIM publisher to support the new PIM API v2

» Updated XNAT IOPlugin to not crash when creating a resource failed because another process already did that
(race condition)

* Make default resource limits for DRMAA configurable

* Add stack trace to FastrExceptions

1.8.3 2.1.1 - 2018-06-29

Fixed

* Fixed some issues with the type estimation of outputs of Jobs and update validation functions of NIFTI files

1.8.4 2.1.0 - 2018-04-13

Added
* SLURM execution plugin based on sbatch, scancel, scontrol and squeue. The plugin supports job
dependencies and cancellation.
* Support for running tools in Docker containers using a DockerTarget

* Support for running tools in Singularity containers using a SingularityTarget

60 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

* Support for datatypes with multiple extensions (e.g. .tif and .tiff) by setting the extension to a tuple of options.
The first extension is leading for deciding filenames in a sink.

Changed

* Source jobs now also validate the output (and do not only rely on the stderr of the tool)

* Added preferred_types attribute to TypeGroups that gives the order of preference of members, alternatively the
order of _members is used (this should be given as tuple or list to be meaningful)

¢ In the config.py you can now access the USER_DIR and SYSTEM_DIR variables for use in setting other
variables. These are only read and changing them will only change subsequent config reads but not the main
config values.

* checksum for nii.gz now takes the md5 checksum of the decompressed data

* Serialization of MacroNodes now should function properly

Fixed

* BUG in XNAT plugin that made it impossible to download data from scans without an empty type string
* BUG where the order of OrderedDict in a source was not preserved

* BUG where newer Werkzeug version requires the web port to be an integer

1.8.5 2.0.1 - 2017-10-19

* Fix a bug in the validation of FilePrefix datatypes

1.8.6 2.0.0 - 2017-09-28

Added

The default python logger can now be configured from the fastr config file under key logging_config

Support for MacroNodes, a Network can be used as a Node inside of another Network. There is should be no
limitation on the internal Network used, but currently the MacroNode ignores input_groups on its inputs.

A sync helper was added to assist in slow file synchronisation over NFS

Source and Sink can now handle S3 URL’s

FastrInterface can now forward errors from a subprocess if they are dumped to stdout or stderr in a json identified
by __ FASTR_ERRORS___ = [].

* A specials.workdir field in the location field of automatic outputs that gives the current working directory
(e.g. job directory)

Added support for Torque (using pbs-drmaa library) to DRMAAExecution

Added option to set a limit for number of jobs submitted at same time be the DRMAAExecution

Use of the ~/.fastr/config.d directory for adding additional config files. Any . py file in there will be parsed in
alphabetical order.

XNATStorage IOPlugin now has a retry scheme for uploads, if an uploaded file could not be found on the server,
it is retried up to 3 times.

1.8. Changelog 61

FASTR Documentation, Release 3.0.0

e Added fastr dump command to create a zip containing all important debugging information.

Changed

* FilePrefix type does not have an extension anymore (avoids ugly dot in middle of filename)
* Allow expanding of link where samples have a non-uniform cardinality. This will not result in a sparse array.
* The default for required for the automatic outputs is now False

¢ Removed testtool commandline subcommand in favour of the t e st subcommand which can test both Tools
and Networks

* Moved nodegroup specification into the Node for speedup
Fixed

* Stop Jobs from failing when a non-required, non-requested output is invalid

* Bug in boolean value parsing in the Boolean datatype

* Bug in target that caused paths not to be expanded properly in some cases

* Made sure failed sources also create a sample so the failure becomes visible and traceable.

* Bug in XNAT IOPlugin that made download from XNAT seem to fail (while getting the correct data).

Removed

* fastr.current_network has been removed as it was deemed to “magical” and could change things out
of the sight of the user.

1.8.7 1.2.2 - 2017-08-24
Fixed

* Fixed a bug breaking the XNAT IOPlugin due to an xnatpy version update.

1.8.8 1.2.1 - 2017-04-04

Added

* A FastrInterface can now specify a negate flag on an automatic output that also has a prefix, which will negate
the flag. This is useful for flag the suppress the creation of an output (e.g. no_mask). An example is given in
the Tool fastr.util.AutoPrefixNegateTest.

Changed

* The provenance and extra information of a Job now is not serialized in the Job, but exported to separate files
next to the job file __ fastr_prov__.json and __fastr_extra_job_info__.json which makes the information more
accessible and reduces the memory footprint of the main process hugely as it will not read this information back
anymore.

62 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

* Most execution plugin will not overwrite the executionscript stdout and stderr but rather append it. This is only
relevant when continuing a run in the an existing temporary directory, but avoids loss of information.

Fixed

* Bug that stopped the Link . append function from returning the newly created link
* Bugs that caused some cardinality computations of the output to fail during execution

* Bug in the job.tmpurl that caused double slashes somewhere. Some tools chocked on this when it was used for
parameters.

1.8.9 1.2.0 - 2017-03-15
Added
¢ Failed sample annotation: when a job fails, the result is annotated and forwarded until a SinkNode, where we

can determine the status and possibly point of failure of the Sample.

* Commandline tool fastr trace thatcan inspect a workflow run and help trace errors and print debug infor-
mation

* Supported for Lmod modules environment next to the old environmentmodules
» BaseDataType descendants are now (un)picklable (including EnumTypes)

» Option to use {extension} field in sink_data, which differs from {ext} in that it doesn’t include a leading
dot.

 Support for Docker targets. A Docker target will execute a command inside of a specified docker container,
allowing Tools to use Docker for distribution

 Using the right and left shift operator (<< and >>) for creating links to Inputs using input << output or
output >> input.

¢ In the FastrInterfaces, automatic outputs can have a prefix for a flag that should be set for the output to be
actually generated.

* Fastr is now able to limit the amount of SourceJobs that are allowed to run concurrently.

* Ability to report progress to PIM (use the pim_host field in the config)

Changed
* Version can now also accept a format based on a date (e.g. 2017-02-17_bananas) which will be parsed the same
way as 2017.02.17_bananas

* Work on the ExecutionPlugin and the corresponding API. Has better fall-backs and a mechanism to advertise
plugin capabilities.

e The collector plugins have the input and input_parts fields merged, and the output and
output_parts fields merged.

1.8. Changelog 63

FASTR Documentation, Release 3.0.0

Fixed

* In some cases the log directory was not created properly, causing an handled exception

¢ A bug making the handling of Booleans incorrect for the FastrInterface, when a Boolean was given a flag would
also appear when it was False

* Serialization of the namespace of a Network was not correct
» Check version of Fastr that creates and executes a Job against each other
¢ load_gpickle helper can handle data with Enums that use to cause an AttributeError

 Output validation of Jobs did not work correctly for automatic outputs

1.8.10 1.1.2 - 2016-12-22

Fixed

* The example network in resources/networks/add_ints.json was using an old serialization format making it non-
functions. Replaced by a new network file.

1.8.11 1.1.1 - 2016-12-22

Fixed

¢ Network runs called from an interpreter (and not file) caused a crash because the network tried to report the file
used. Better handling of these situations.

1.8.12 1.1.0 - 2016-12-08

Added

» Namespaces for resources (tools and networks)

* Network manager located at fastr.networklist

* RQExecution plugin. This plugin uses python-rq to manage a job queue.

* LinearExecution plugin. This plugin uses a background thread for execution.
* BlockingExecution plugin. This plugin executes jobs in a blocking fashion.

* Automatic generation of documentation for all plugins, the configuration fields and all commandline tools.

Changed

* Provenance is updated with a network dump and used tool definitions.
* New configuration system that uses python files
* New plugin system that integrates with the new configuration system and enables automatic importing of plugins

* The fastr command line tools now use an entrypoint which is located in fastr.utils.cmd. This code also
dispatches the sub commands.

64 Chapter 1. FASTR Documentation

FASTR Documentation, Release 3.0.0

Removed

» fastr.config file. This is replaced by the config.py file. Go to the docs!

Fixed

* Adds explicit tool namespace and version to the provenance document.

1.8. Changelog 65

FASTR Documentation, Release 3.0.0

66

Chapter 1. FASTR Documentation

CHAPTER 2

FASTR User reference

2.1 Fastr User Reference

fastr.tools
A ToolManager containing all versions of all Tools loaded into the FASTR environment. The ToolManager can
be indexed using the Tool id string or a tool id string and a version. For example if you have two versions (4.5
and 4.8) of a tool called Elastix:

>>> fastr.tools['elastix.Elastix']
Tool Elastix v4.8 (Elastix Registration)

Inputs o
—Outputs
e
fixed_image (ITKImageFile) | directory,,
— (Directory)
moving_image (ITKImageFile) | transform
— (ElastixTransformFile)
parameters (ElastixParameterFile) | log_file

— (ElastixLogFile)

fixed_mask (ITKImageFile)

moving_mask (ITKImageFile)

initial_transform (ElastixTransformFile)

priority (__Elastix_4.8_interface__priority__Enum__) |
(

threads Int)

>>> fastr.tools['elastix.Elastix', '4.5'"]
Tool Elastix v4.5 (Elastix Registration)

Inputs o
—QOutputs
e
fixed_image (ITKImageFile) | directory,,

— (Directory)

(continues on next page)

67

FASTR Documentation, Release 3.0.0

(continued from previous page)

moving_image (ITKImageFile) | transform,,
— (ElastixTransformFile)

parameters (ElastixParameterFile) | log_file
— (ElastixLogFile)

fixed_mask ITKImageFile)

moving_mask ITKImageFile)

priority __FElastix_4.5_interface_ _priority__ Enum__)
threads Int)

(|

(|
initial_transform (ElastixTransformFile)

(|

(|

fastr.types
A dictionary containing all types loaded into the FASTR environment. The keys are the typenames and the
values are the classes.

fastr.networks
A dictionary containing all networks loaded in fastr

api.create_network (version=None)
Create a new Network object

Parameters

e id (str) —id of the network

e version (Union[Version, str, None])— version of the network
Return type Network
Returns

api.create_network_copy ()
Create a network based on another Network state. The network state can be a Network or the state gotten from
a Network with __getstate__.

Parameters network_state (Union[Network, Network, dict]) — Network (state) to cre-
ate a copy of

Return type Network
Returns The rebuilt network

class fastr.api.Network (id, version=None)
Representation of a Network for the creating and adapting Networks

create_constant (datatype, data, id=None, step_id=None, resources=None, node_group=None)
Create a ConstantNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (Union[BaseDataType, str]) — The DataType of the constant node

e data (Dict[str, Union[List[Union[str, Tuple[str, ...]]], Dict[str,
Union[str, Tuple[str,...]]]]]) — The data to hold in the constant node

e id (Optional[str]) - The id of the constant node to be created
* step_id (Optional[str])— The step to add the created constant node to
* resources (Optional[ResourceLimit])—The resources required to run this node

* node_group (Optional[str])—The group the node belongs to, this can be important
for FlowNodes and such, as they will have matching dimension names.

Return type Node

68 Chapter 2. FASTR User reference

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/typing.html#typing.List
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

Returns the newly created constant node

create_link (source, target, id=None, collapse=None, expand=False)
Create a link between two Nodes and add it to the current Network.

Parameters
* source (Union[Input, BaseInput])— the output that is the source of the link
* target (Union[Output, BaseOutput]) — the input that is the target of the link
e id (Optional[str]) - the id of the link

* collapse (Optional[Tuple[Union[int, str], ...]]) — The dimensions to col-
lapse in this link.

* expand (bool) — Flag to expand cardinality into a new dimension
Return type Link
Returns the created link

create_macro (network, id=None)
Create macro node (a node which actually contains a network used as node inside another network).

Parameters

¢ network (Union[Network, Network, dict, Tool, str]) — The network to use,
this can be a network (state), a macro tool, or the path to a python file that contains a
function create_network which returns the desired network.

e id (Optional[str]) — The id of the node to be created
Return type Node
Returns the newly created node

create_node (t00l, tool_version, id=None, step_id=None, resources=None, node_group=None)
Create a Node in this Network. The Node will be automatically added to the Network.

Parameters
e tool (Union[Tool, str])— The Tool to base the Node on
e id (Optional[str])— The id of the node to be created
* step_id (Optional[str])— The step to add the created node to
* resources (Optional[ResourceLimit])—The resources required to run this node

* nodegroup — The group the node belongs to, this can be important for FlowNodes and
such, as they will have matching dimension names.

Return type Node
Returns the newly created node

create_sink (datatype, id=None, step_id=None, resources=None, node_group=None)
Create a SinkNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (Union[BaseDataType, str])— The DataType of the sink node
e id (Optional[str])— The id of the sink node to be created
* step_id (Optional[str])— The step to add the created sink node to

* resources (Optional[ResourceLimit])—The resources required to run this node

2.1.

Fastr User Reference

69

https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional

FASTR Documentation, Release 3.0.0

* node_group (str)— The group the node belongs to, this can be important for FlowN-
odes and such, as they will have matching dimension names.

Return type Node
Returns the newly created sink node

create_source (datatype, id=None, step_id=None, resources=None, node_group=None)
Create a SourceNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (BaseDataType) — The DataType of the source source_node
e id (str) - The id of the source source_node to be created
* step_id (str)— The step to add the created source source_node to
* resources (Optional[ResourceLimit])—The resources required to run this node

* node_group (str)— The group the node belongs to, this can be important for FlowN-
odes and such, as they will have matching dimension names.

Returns the newly created source source_node
Return type SourceNode

draw (file_path=None, draw_dimensions=True, hide_unconnected=True, expand_macros=1)
Draw a graphical representation of the Network

Parameters

* file_path (str) — The path of the file to create, the extension will control the image
type

* draw_dimensions (bool) — Flag to control if the dimension sizes should be drawn in
the figure, default is true

* expand_macros (bool) - Flag to control if and how macro nodes should be expanded,
by default 1 level is expanded

Return type Optional[str]
Returns path of the image created or None if failed

execute (source_data, sink_data, tmpdir=None, timestamp=None, blocking=True)
Execute the network with the given source and sink data.

Parameters

e source_data (Dict[str, Union[List[Union[str, Tuple[str, ...1]],
Dict[str,Union[str, Tuple[str,...]]]]]) — Source data to use as an input

* sink_data (Union[str, Dict[str, str]]) — Sink rules to use for determining the
outputs

e tmpdir (Optional[str])— The scratch directory to use for this network run, if an ex-
isting directory is given, fastr will try to resume a network run (see Continuing a Network)

* timestamp (Union[datetime, str, None]) — The timestamp of the network run
(useful for retrying or continuing previous runs)

* blocking (bool) — Flag to indicate if the execution should be blocking or launched in
a background thread

Return type NetworkRun

70 Chapter 2. FASTR User reference

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/typing.html#typing.List
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/datetime.html#datetime.datetime
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool

FASTR Documentation, Release 3.0.0

Returns The network run object for the started execution
id
The unique id describing this resource

Return type str

classmethod load (filename)
Load Network froma file

Parameters filename (str)—
Returns loaded network
Return type Nerwork

save (filename, indent=2)
Save the Network to a JSON file

Parameters
e filename (st r) — Path of the file to save to
¢ indent (int) - Indentation to use (None for no indentation)

version
Version of the Network (so users can keep track of their version)

Return type Version

class fastr.api.Link (parent)
Representation of a link for editing the Network

collapse
The dimensions which the link will collapse into the cardinality

Return type Tuple[Union[int, str],...]

expand
Flag that indicates if the Link will expand the cardinality into a new dimension.

Return type bool
id
The unique id describing this resource
Return type str

class fastr.api.Node (parent)
Representation of Node for editing the Network

id
The unique id describing this resource
Return type str
input
In case there is only a single Inputs in a Node, this can be used as a short hand. In that case it is basically
the same as 1ist (node.inputs.values () [0]).
Return type Tnput
inputs

Mapping object containing all Inputs of a Node

Return type InputMap

2.1. Fastr User Reference 71

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

output
In case there is only a single Outputs in a Node, this can be used as a short hand. In that case it is basically
the same as 1ist (node.outputs.values () [0]).

Return type Output

outputs
Mapping object containing all Outputs of a Node

Return type SubObjectMap[Output]

class fastr.api.Input (parent)
Representation of an Input of a Node

__1lshift__ (other)
This operator allows the easy creation of Links to this Input using the << operator. Creating links can be

done by:

Generic form

>> link = input << output

>> link = input << ['some', 'data'] # Create a constant node

Examples
>> 1linkl = addint.inputs['left _hand'] << sourcel.input
>> 1ink2 = addint.inputs|['right_hand'] << [1, 2, 3]

Mutliple 1links
>> links = addints.inputs['left_hand'] << (sourcel.output, source2.output,
—source3.output)

The last example would return a tuple with three links.

Parameters other (Union[Output, BaseOutput, 1ist, dict, tuple]) — the target to
create the link from, this can be an Output, a tuple of Outputs, or a data structure that can be
used as the data for a ConstantNode

Return type Union[Link, Tuple[Link,...]]
Returns Newly created link(s)

__rrshift_ (other)
This operator allows to use the >> operator as alternative to using the << operator. See the _ I1shift___
operator for details.

Parameters other (Union[Output, BaseOutput, 1ist, dict, tuple]) — the target to
create the link from

Return type Union[Link, Tuple[Link,...]]
Returns Newly created link(s)

append (value)
Create a link from give resource to a new Sublnput.

Parameters value (Union[Output, BaseOutput, 1ist, dict, tuple]) — The source
for the link to be created

Return type Link
Returns The newly created link
id
The unique id describing this resource

72 Chapter 2. FASTR User reference

https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#tuple

FASTR Documentation, Release 3.0.0

Return type str

input_group
The input group of this Input. This property can be read and changed. Changing the input group of an
Input will influence the data flow in a Node (see Advanced flows in a Node for details).

Return type str

class fastr.api.Output (parent)
Representation of an Output of a Node

__getitem _ (item)
Get a SubOuput of this Ouput. The SubOutput selects some data from the parent Output based on an index
or slice of the cardinalty.

Parameters key — the key of the requested item, can be an index or slice
Return type Output
Returns the requested SubOutput with a view of the data in this Output
id
The unique id describing this resource

Return type str

2.1. Fastr User Reference 73

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

74

Chapter 2. FASTR User reference

CHAPTER 3

FASTR Developer Module reference

3.1 fastr Package

3.1.1 fastr Package

Initialize self. See help(type(self)) for accurate signature.

fastr._ _init__ . dir () —list
default dir() implementation

fastr.__init_ . format_ ()
default object formatter

fastr.__init___ .__ init_subclass__ ()
This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

fastr._ _init_ ._ new__ ()

Create and return a new object. See help(type) for accurate signature.

fastr._ _init__ ._ reduce__ ()
helper for pickle

fastr.__init_ . reduce_ex__ ()
helper for pickle

fastr.__init__ . sizeof () —int

size of object in memory, in bytes

fastr.__init__ .__ subclasshook__ ()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc. ABCMeta.__subclasscheck__(). It should return True, False or Notlmple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algo-
rithm (and the outcome is cached).

75

FASTR Documentation, Release 3.0.0

3.1.2 exceptions Module

This module contains all Fastr-related Exceptions

exception fastr.exceptions.FastrAttributeError (*args, **kwargs)
Bases: fastr.exceptions.FastrError, AttributeError

AttributeError in the fastr system
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrCannotChangeAttributeError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Attempting to change an attribute of an object that can be set only once.
__module_ = 'fastr.exceptions'

exception fastr.exceptions.FastrCardinalityError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The description of the cardinality is not valid.
__module_ = 'fastr.exceptions'

exception fastr.exceptions.FastrCollectorError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Cannot collect the results from a Job because of an error
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrDataTypeFileNotReadable (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Could not read the datatype file.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrDataTypeMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

When using a DataType as the key for the DataTypeManager, the DataTypeManager found another DataType
with the same name already in the DataTypeManager. The means fastr has two version of the same DataType in
the system, which should never happen!

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrDataTypeNotAvailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The DataType requested is not found by the fastr system. Typically this means that no matching DataType is
found in the DataTypeManager.

__module___ = 'fastr.exceptions'

exception fastr.exceptions.FastrDataTypeNotInstantiableError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The base classes for DataTypes cannot be instantiated and should always be sub-classed.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrDataTypeValueError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

76 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/exceptions.html#AttributeError

FASTR Documentation, Release 3.0.0

This value in fastr did not pass the validation specificied for its DataType, typically means that the data is missing
or corrupt.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrError (*args, **kwargs)
Bases: Exception

This is the base class for all fastr related exceptions. Catching this class of exceptions should ensure a proper
execution of fastr.

__dinit__ (*args, **kwargs)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module__ = 'fastr.exceptions'

__repr__ ()
String representation of the error

Returns error representation
Return type str

str__ ()
String value of the error

Returns error string
Return type str

__weakref
list of weak references to the object (if defined)

excerpt ()
Return a excerpt of the Error as a tuple.

exception fastr.exceptions.FastrErrorInSubprocess (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

Encountered an error in the subprocess started by the execution script
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrExecutableNotFoundError (executable=None, *args,

*rkwargs)
Bases: fastr.exceptions.FastrExecutionError

The executable could not be found!

__init_ (executable=None, *args, **kwargs)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module__ = 'fastr.exceptions'

__str_ ()
String representation of the error

exception fastr.exceptions.FastrExecutionError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Base class for all fastr execution related errors

__module__ = 'fastr.exceptions'

3.1. fastr Package 77

https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

exception fastr.exceptions.FastrFileNotFound (filepath, message=None)
Bases: fastr.exceptions.FastrError

Could not find an expected file

__init__ (filepath, message=None)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrIOError (*args, **kwargs)
Bases: fastr.exceptions.FastrError, OSError

IOError in the fastr system
__module__ = 'fastr.exceptions'

__weakref
list of weak references to the object (if defined)

exception fastr.exceptions.FastrImportError (*args, **kwargs)
Bases: fastr.exceptions.FastrError, ImportError

ImportError in the fastr system
__module__ = 'fastr.exceptions'

__weakref
list of weak references to the object (if defined)

exception fastr.exceptions.FastrIndexError (*args, **kwargs)
Bases: fastr.exceptions.FastrError, IndexError

IndexError in the fastr system
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrIndexNonexistent (*args, **kwargs)
Bases: fastr.exceptions.FastrIndexError

This is an IndexError for samples requested from a sparse data array. The sample is not there but is probably
not there because of sparseness rather than being a missing sample (e.g. out of bounds).

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrKeyError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,KeyError

KeyError in the fastr system
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrLockNotAcquired (directory, message=None)
Bases: fastr.exceptions.FastrError

Could not lock a directory

__init__ (directory, message=None)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrLookupError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

78 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/exceptions.html#OSError
https://docs.python.org/3.7/library/exceptions.html#ImportError
https://docs.python.org/3.7/library/exceptions.html#IndexError
https://docs.python.org/3.7/library/exceptions.html#KeyError

FASTR Documentation, Release 3.0.0

Could not find specified object in the fastr environment.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrMountUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Trying to access an undefined mount
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrNetworkMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Two interacting objects belong to different fastr network.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrNetworkUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Reference to a Tool that is not recognised by the fastr system. This typically means the specific id/version
combination of the requested tool has not been loaded by the ToolManager.

__module_ = 'fastr.exceptions'

exception fastr.exceptions.FastrNoValidTargetError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Cannot find a valid target for the tool
__module_ = 'fastr.exceptions'

exception fastr.exceptions.FastrNodeAreadyPreparedError (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

A attempt is made at preparing a NodeRun for the second time. This is not allowed as it would wipe the current
execution data and cause data-loss.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrNodeNotPreparedError (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

When trying to access executation data of a NodeRun, the NodeRun must be prepare. The NodeRun has not
been prepared by the execution, so the data is not available!

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrNodeNotValidError (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

A NodeRun is not in a valid state where it should be, typically an invalid NodeRun is passed to the executor
causing trouble.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrNotExecutableError (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

The command invoked by subprocess is not executable on the system
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrNotImplementedError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,NotImplementedError

3.1. fastr Package 79

https://docs.python.org/3.7/library/exceptions.html#NotImplementedError

FASTR Documentation, Release 3.0.0

This function/method has not been implemented on purpose (e.g. should be overwritten in a sub-class)
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrOSError (*args, **kwargs)
Bases: fastr.exceptions.FastrError, OSError

OSError in the fastr system
__module__ = 'fastr.exceptions'

__weakref
list of weak references to the object (if defined)

exception fastr.exceptions.FastrObjectUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Reference to a Tool that is not recognised by the fastr system. This typically means the specific id/version
combination of the requested tool has not been loaded by the ToolManager.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrOptionalModuleNotAvailableError (*args,

**kwargs)
Bases: fastr.exceptions.FastrNotImplementedError

A optional modules for Fastr is needed for this function, but is not available on the current python installation.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrOutputValidationError (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

An output of a Job does not pass validation
__module___ = 'fastr.exceptions'

exception fastr.exceptions.FastrParentMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Two interactive objects have different parent where they should be the same
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrPluginCapabilityNotImplemented (*args,
**kwargs)
Bases: fastr.exceptions.FastrNotImplementedError

A plugin did not implement a capability that it advertised.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrPluginNotAvailable (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Indicates that a requested Plugin was not found on the system.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrPluginNotLoaded (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

The plugin was not successfully loaded. This means the plugin class cannot be instantiated.

__module__ = 'fastr.exceptions'

80 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/exceptions.html#OSError

FASTR Documentation, Release 3.0.0

exception fastr.exceptions.FastrResultFileNotFound (filepath, message=None)
Bases: fastr.exceptions.FastrFileNotFound, fastr.exceptions.
FastrExecutionError

Could not found the result file of job that finished. This means the executionscript process was killed during
interruption. Generally this means a scheduler killed it because of resource shortage.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrScriptNotFoundError (interpreter=None, script=None,

paths=None, *args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

Script could not be found

__init__ (interpreter=None, script=None, paths=None, *args, **kwargs)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module___ = 'fastr.exceptions'

__str__ ()
String value of the error

Returns error string
Return type str

exception fastr.exceptions.FastrSerializationError (message, serializer, origi-

nal_exception=None)
Bases: fastr.exceptions.FastrError

The serialization encountered a serious problem

__init__ (message, serializer, original_exception=None)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module___ = 'fastr.exceptions'

__repr_ ()
Simple string representation of the exception

str__ ()
Advanced string representation of the exception including the data about where in the schema things went
wrong.

exception fastr.exceptions.FastrSerializationIgnoreDefaultError (message, seri-
alizer, origi-

nal_exception=None)
Bases: fastr.exceptions.FastrSerializationError

The value and default are both None, so the value should not be serialized.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSerializationInvalidDataError (message, se-
rializer, origi-
nal_exception=None)
Bases: fastr.exceptions.FastrSerializationError

Encountered data to serialize that is invalid given the serialization schema.

__module__ = 'fastr.exceptions'

3.1. fastr Package 81

https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

exception fastr.exceptions.FastrSerializationMethodError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

The desired serialization method does not exist.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSinkDataUnavailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Could not find the Sink data for the desire sink.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSizeInvalidError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The given size cannot be valid.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSizeMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The size of two object in fastr is not matching where it should.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSizeUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The size of object is not (yet) known and only a theoretical estimate is available at the moment.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSourceDataUnavailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Could not find the Source data for the desire source.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrStateError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

An object is in an invalid/unexpected state.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrSubprocessNotFinished (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

Encountered an error before the subprocess call by the execution script was properly finished.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrToolNotAvailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The tool used is not available on the current platform (OS and architecture combination) and cannot be
used.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrToolTargetNotFound (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Could not determine the location of the tools target binary/script. The tool cannot be used.

82 Chapter 3. FASTR Developer Module reference

FASTR Documentation, Release 3.0.0

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrToolUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Reference to a Tool that is not recognised by the fastr system. This typically means the specific id/version
combination of the requested tool has not been loaded by the ToolManager.

__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrToolVersionError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Version mismatch, usually the installed tool version and version requested by the network mismatch.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrTypeError (*args, **kwargs)
Bases: fastr.exceptions.FastrError, TypeError

TypeError in the fastr system
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrUnknownURLSchemeError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Fastr encountered a data URL with a scheme that was not recognised by the IOPlugin manager.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrValueError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,ValueError

ValueError in the fastr system
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrVersionInvalidError (*args, **kwargs)
Bases: fastr.exceptions.FastrValueError

The string representation of the version is malformatted.
__module__ = 'fastr.exceptions'

exception fastr.exceptions.FastrVersionMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrValueError

There is a mismatch between different parts of the Fastr environment and integrity is compromised.
__module__ = 'fastr.exceptions'

fastr.exceptions.get_message (exception)
Extract the message from an exception is a safe manner

Parameters exception (BaseException)— exception to extract from
Returns message string

Return type str

3.1.3 version Module

This module keeps track of the version of the currently used Fastr framework. It can check its version from mercurial
or a saved file

3.1. fastr Package 83

https://docs.python.org/3.7/library/exceptions.html#TypeError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#BaseException
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

fastr.version.clear version|()
Remove the cached version info

fastr.version.get_base_version ()
Get the version from the top-level version file

Return type Optional[str]
Returns the version
Rtype str

fastr.version.get_hg info()
Read information about the current mercurial branch and revision

Return type Tuple[Optional[str], Optional[str]]
Returns tuple containing head revision and branch

fastr.version.get_saved_version ()
Get cached version from file

Return type Tuple[Optional[str], Optional[str], Optional[str]]
Returns tuple with version, head revision and branch

fastr.version.save_version (current_version, current_hg_head, current_hg_branch)
Cache the version information (useful for when installing)

Parameters
* current_version (str)— version
* current_hg head (st r)— mercurial head revision
* current_hg branch (st r)— mercurial branch

Returns

3.1.4 Subpackages
api Package

api Package

This module provides the API for fastr that users should use. This API will be considered stable between major
versions. If users only interact via this API (and refrain from operating on parent attributes), their code should be
compatible within major version of fastr.

fastr.api.create_network (id, version=None)
Create a new Network object

Parameters

e id (str) —id of the network

e version (Union[Version, str, None])— version of the network
Return type Network

Returns

84 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

fastr.api.create_network_copy (network_state)

Create a network based on another Network state. The network state can be a Network or the state gotten from
a Network with __getstate__.

Parameters network_state (Union[Network, Network, dict]) — Network (state) to cre-
ate a copy of

Return type Network
Returns The rebuilt network

class fastr.api.ResourceLimit (cores=1, memory="2G’, time="01:00:00")
Bases: object

__eq__ (other)
Check if two resource limits are equal

Parameters other —resource limit to test against
Return type bool

__getstate__ ()
Return type dict

__hash = None

__init__ (cores=1, memory="2G’, time="01:00:00’)
An object describing resource requirements/limits for a node

Parameters
¢ cores (Optionall[int])— number of cores

* memory (Union[str, int, None]) — memory specification, can be int with number
of megabytes or a string with numbers ending on M, G, T, P for megabytes, gigabytes,
terrabytes or petabytes. Note that the number has to be an integer, e.g. 1500M would
work, whereas 1.5G would be invalid

* time (Union[str, int, None]) — run time specification, this can be an int with the
number of seconds or a string in the HH:MM:SS, MM:SS, or SS format. Where HH, MM,
and SS are integers representing the number of hours, minutes and seconds.

_ _module_ = 'fastr.core.resourcelimit'

__ne__ (other)
Check if two resource limits are not equal

Parameters other — resource limit to test against
Return type bool

__setstate__ (state)

__slots_ = ('_cores', '_memory', '_time')

copy ()
Return a copy of current resource limit object

Return type ResourcelLimit

cores
The required number of gpus

Return type int

3.1. fastr Package 85

https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int

FASTR Documentation, Release 3.0.0

memory
The required memory in megabytes

Return type int

time
The required time in seconds

Return type int

core Package

core Package

This module contains all of the core components of fastr. It has the classes to create networks and work with them.

cardinality Module

class fastr.core.cardinality.AnyCardinalitySpec (parent)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

_ _hash__ = None
__module__ = 'fastr.core.cardinality'

__str__ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

validate (payload, cardinality)
Validate cardinality given a payload and cardinality

Parameters

* payload (dict) — Payload of the corresponding job

* cardinality (int) — Cardinality to validate
Return type bool
Returns Validity of the cardinality given the spec and payload

class fastr.core.cardinality.AsCardinalitySpec (parent, target)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash__ = None

__init__ (parent, target)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'fastr.core.cardinality'

__str ()
String version of the cardinality spec, should be parseable by create_cardinality

86 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool

FASTR Documentation, Release 3.0.0

Return type str

calculate_execution_cardinality (key=None)
Calculate the cardinality given the node and spec, during execution this should be available and not give
unknowns once the data is present and the key is given.

Parameters key — Key for which the cardinality is calculated
Return type Optional[int]
Returns calculated cardinality

calculate_job_cardinality (payload)
Calculate the actually cardinality when a job needs to know how many arguments to create for a non-
automatic output.

Return type Optional[int]

calculate_planning cardinality ()
Calculate the cardinality given the node and spec, for cardinalities that only have validation and not a
pre-calculable value, this return None.

Parameters node — Node for which the cardinality is calculated
Return type Optional[int]
Returns calculated cardinality

node

predefined
Indicate whether the cardinality is predefined or can only be calculated after execution

class fastr.core.cardinality.CardinalitySpec (parent)
Bases: object

__dict__ = mappingproxy({'__module_': 'fastr.core.cardinality', '_ _init_ ': <functi

__eq__ (other)
Test for equality

__hash___ = None

__init__ (parent)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'fastr.core.cardinality'

__ne__ (other)
Return self!=value.

__repr_ ()
Console representation of the cardinality spec

Return type str

__str__ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

__weakref
list of weak references to the object (if defined)

3.1. fastr Package 87

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

calculate_execution_cardinality (key=None)

Calculate the cardinality given the node and spec, during execution this should be available and not give
unknowns once the data is present and the key is given.

Parameters key — Key for which the cardinality is calculated
Return type Optional[int]
Returns calculated cardinality

calculate_job_cardinality (payload)

Calculate the actually cardinality when a job needs to know how many arguments to create for a non-
automatic output.

Return type Optional[int]

calculate_planning cardinality ()

Calculate the cardinality given the node and spec, for cardinalities that only have validation and not a
pre-calculable value, this return None.

Parameters node — Node for which the cardinality is calculated
Return type Optional[int]
Returns calculated cardinality

predefined
Indicate whether the cardinality is predefined or can only be calculated after execution

validate (payload, cardinality, planning=True)
Validate cardinality given a payload and cardinality

Parameters

* payload (Optional[dict])— Payload of the corresponding job
* cardinality (int) — Cardinality to validate

Return type bool

Returns Validity of the cardinality given the spec and payload

class fastr.core.cardinality.ChoiceCardinalitySpec (parent, options)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash___ = None

__dinit__ (parent, options)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'fastr.core.cardinality'

_str__ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

class fastr.core.cardinality.IntCardinalitySpec (parent, value)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash = None

88 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

__init__ (parent, value)
Initialize self. See help(type(self)) for accurate signature.

__module_ = 'fastr.core.cardinality'

__str_ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

calculate_execution_cardinality (node)

Calculate the cardinality given the node and spec, during execution this should be available and not give
unknowns once the data is present and the key is given.

Parameters key — Key for which the cardinality is calculated
Return type int
Returns calculated cardinality

calculate_job_cardinality (payload)

Calculate the actually cardinality when a job needs to know how many arguments to create for a non-
automatic output.

Return type Optional[int]

calculate_planning cardinality ()

Calculate the cardinality given the node and spec, for cardinalities that only have validation and not a
pre-calculable value, this return None.

Parameters node — Node for which the cardinality is calculated
Return type int
Returns calculated cardinality

predefined
Indicate whether the cardinality is predefined or can only be calculated after execution

class fastr.core.cardinality.MaxCardinalitySpec (parent, value)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash = None

__init__ (parent, value)
Initialize self. See help(type(self)) for accurate signature.

__module_ = 'fastr.core.cardinality'

__str_ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

class fastr.core.cardinality.MinCardinalitySpec (parent, value)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash_ = None

3.1. fastr Package 89

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

__init__ (parent, value)
Initialize self. See help(type(self)) for accurate signature.

__module_ = 'fastr.core.cardinality'

__str_ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

class fastr.core.cardinality.RangeCardinalitySpec (parent, min, max)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash_ = None

__init__ (parent, min, max)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'fastr.core.cardinality'

__str__ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

class fastr.core.cardinality.ValueCardinalitySpec (parent, target)
Bases: fastr.core.cardinality.CardinalitySpec

__eq__ (other)
Test for equality

__hash__ = None

__init__ (parent, target)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'fastr.core.cardinality'

__str__ ()
String version of the cardinality spec, should be parseable by create_cardinality

Return type str

calculate_execution_cardinality (key=None)

Calculate the cardinality given the node and spec, during execution this should be available and not give
unknowns once the data is present and the key is given.

Parameters key — Key for which the cardinality is calculated
Return type Optional[int]
Returns calculated cardinality

calculate_job_cardinality (payload)

Calculate the actually cardinality when a job needs to know how many arguments to create for a non-
automatic output.

Return type Optional[int]

node

920 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#int

FASTR Documentation, Release 3.0.0

fastr.core.cardinality.create_cardinality (desc, parent)

Create simplified description of the cardinality. This changes the string representation to a tuple that is easier to
check at a later time.

Parameters desc (str) — the string version of the cardinality

Parent the parent input or output to which this cardinality spec belongs
Return type CardinalitySpec

Returns the simplified cardinality description

Raises FastrCardinalityError —if the Input/Output has an incorrect cardinality description.

The translation works with the following table:

cardinality string | cardinality spec description

"x" any “(any’)) Any cardinality is allowed

" ("int', N) A cardinality of N is required

"N-M" ('range', N, M) A cardinality between N and M is required

"x—M" ('max', M) A cardinality of maximal M is required

"N—#" ("min', N) A cardinality of minimal N is required

"[M,N,...,O, ('choice', [M,N,..., The cardinality should one of the given options

P1" 0,P])

"as:input_id"| ('as', 'input_id"') The cardinality should match the cardinality of the
given Input

"val:input_1id" ('val', 'input_id") The cardinliaty should match the value of the given
Input

Note: The maximumu, minimum and range are inclusive

dimension Module

class fastr.core.dimension.Dimension (name, size)
Bases: object

A class representing a dimension. It contains the name and size of the dimension.

__eq__ (other)
Dimension is the same if the name and size are the same

__hash_ = None

__init__ (name, size)
The constructor for the dimension.

Parameters
¢ name (st r)— Name of the dimension
e size (int or sympy.Symbol) - Size fo the dimension
__module__ = 'fastr.core.dimension'

__ne__ (other)
The not equal test is simply the inverse of the equal test

3.1. fastr Package 91

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int

FASTR Documentation, Release 3.0.0

__repr_ ()
String representation of a Dimension

__slots. = ('_name', '_size')
copy ()

Get a copy object of a Dimension
name
size

update_size (value)

class fastr.core.dimension.ForwardsDimensions
Bases: fastr.core.dimension.HasDimensions

Class of objects that have dimensions not because they contain data with dimensions but forward them (option-
ally with changes via combine_dimensions)

_ abstractmethods_ = frozenset ({'source', 'combine_dimensions'})
__module_ = 'fastr.core.dimension'

combine_dimensions (dimensions)
Method to combine/manipulate the dimensions

Parameters dimensions — the input dimensions from the source
Returns dimensions manipulated for this object
Return type tuple of dimensions

dimensions
The dimensions of the object based on the forwarding

source
The source object from which the dimensions are forwarded

Returns the object from which the dimensions are forwarded
Return type HasDimensions

class fastr.core.dimension.HasDimensions
Bases: object

A Micxin class for any object that has a notion of dimensions and size. It uses the dimension property to expose
the dimension name and size.

__abstractmethods___ = frozenset ({'dimensions'})

__dict__ = mappingproxy({'_ _module_': 'fastr.core.dimension', '_ _doc_ ':
__module = 'fastr.core.dimension'

___weakref

list of weak references to the object (if defined)

dimensions
The dimensions has to be implemented by any subclass. It has to provide a tuple of Dimensions.

Returns dimensions
Return type tuple

dimnames
A tuple containing the dimension names of this object. All items of the tuple are of type str.

92 Chapter 3. FASTR Developer Module reference

'\n A Mixi;

https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#tuple

FASTR Documentation, Release 3.0.0

ndims
The number of dimensions in this object

size
A tuple containing the size of this object. All items of the tuple are of type int or sympy.Symbol.

interface Module

A module that describes the interface of a Tool. It specifies how a set of input values will be translated to com-
mands to be executed. This creates a generic interface to different ways of executing underlying software.

class fastr.core.interface.InputSpec
Bases: fastr.core.interface.InputSpec

Class containing the information about an Input Specification, this is essentially a data class (but
__dict___ = mappingproxy ({'__module_ ': 'fastr.core.interface', '_ doc_ ': '\n Class
__module_ = 'fastr.core.interface'

static __new__ (cls, id_, cardinality, datatype, required=False, description=", default=None, hid-

o den=Fulse)
Create new instance of InputSpec(id, cardinality, datatype, required, description, default, hidden)

fastr.core.interface.InputSpecBase
alias of fastr.core.interface. InputSpec

class fastr.core.interface.Interface
Bases: fastr.abc.baseplugin.Plugin, fastr.abc.serializable.Serializable

Abstract base class of all Interfaces. Defines the minimal requirements for all Interface implementations.
__abstractmethods__ = frozenset ({'__setstate_ ', 'inputs', 'outputs', '_ getstate_ ',

__getstate__ ()
Retrieve the state of the Interface

Returns the state of the object
Rtype dict
__module_ = 'fastr.core.interface'

__setstate__ (state)
Set the state of the Interface

execute (target, payload)
Execute the interface given the a target and payload. The payload should have the form {‘input’: {‘in-
put_id_a’: (value, value), ‘input_id_b’: (value, value)},

‘output’: {‘output_id_a’: (value, value), ‘output_id_b’: (value, value)}}

Parameters

* target — the target to call

* payload - the payload to use
Returns the result of the execution

Return type (tuple of) InterfaceResult

3.1. fastr Package 93

FASTR Documentation, Release 3.0.0

expanding
Indicates whether or not this Interface will result in multiple samples per run. If the flow is unaffected, this
will be zero, if it is nonzero it means that number of dimension will be added to the sample array.

inputs
OrderedDict of Inputs connected to the Interface. The format should be {input_id: InputSpec}.

outputs
OrderedDict of Output connected to the Interface. The format should be {output_id: OutputSpec}.

classmethod test ()
Test the plugin, interfaces do not need to be tested on import

class fastr.core.interface.InterfaceResult (result_data, target_result, payload, sam-
ple_index=None, sample_id=None, er-

rors=None)
Bases: object

The class in which Interfaces should wrap their results to be picked up by fastr
__dict___ = mappingproxy({'__module__ ': 'fastr.core.interface', '_ doc_ ': '\n The cl.

__init__ (result_data, target_result, payload, sample_index=None, sample_id=None, errors=None)
Initialize self. See help(type(self)) for accurate signature.

module = 'fastr.core.interface'

__weakref
list of weak references to the object (if defined)

class fastr.core.interface.OutputSpec
Bases: fastr.core.interface.OutputSpec

Class containing the information about an Output Specification, this is essentially a data class (but
__dict__ = mappingproxy({'__module__ ': 'fastr.core.interface', '__doc__': '\n Class .
__module = 'fastr.core.interface'

static __new__ (cls, id_, cardinality, datatype, automatic=True, required=False, description="",

o hidden=False)
Create new instance of OutputSpec(id, cardinality, datatype, automatic, required, description, hidden)

fastr.core.interface.OutputSpecBase
alias of fastr.core.interface.OutputSpec

ioplugin Module

This module contains the manager class for [OPlugins and the base class for all IOPlugins

class fastr.core.ioplugin.IOPlugin
Bases: fastr.abc.baseplugin.Plugin

IOPlugins are used for data import and export for the sources and sinks. The main use of the TOP1uginsis
during execution (see Execution). The TOPI1ugins can be accessed via fastr.ioplugins, but generally
there should be no need for direct interaction with these objects. The use of is mainly via the URL used to
specify source and sink data.

_ _abstractmethods_ = frozenset ({'scheme'})

__init__ ()
Initialization for the IOPlugin

94 Chapter 3. FASTR Developer Module reference

https://docs.python.org/3.7/library/functions.html#object

FASTR Documentation, Release 3.0.0

Returns newly created IOPlugin
__module__ = 'fastr.core.ioplugin'

cleanup ()
(abstract) Clean up the IOPlugin. This is to do things like closing files or connections. Will be called
when the plugin is no longer required.

expand_url (url)
(abstract) Expand an URL. This allows a source to collect multiple samples from a single url. The
URL will have a wildcard or point to something with info and multiple urls will be returned.

Parameters url (str)—url to expand
Returns the resulting url(s), a tuple if multiple, otherwise a str
Return type str or tuple of str

fetch_url (inurl, outfile)
(abstract) Fetch a file from an external data source.

Parameters
e inurl — url to the item in the data store
* outpath — path where to store the fetch data locally

fetch value (inurl)
(abstract) Fetch a value from an external data source.

Parameters inurl — the url of the value to retrieve
Returns the fetched value

static isurl (string)
Test if given string is an url.

Parameters string (str) — string to test
Returns True if the string is an url, False otherwise
Return type bool

path_to_url (path, mountpoint=None)
(abstract) Construct an url from a given mount point and a relative path to the mount point.

Parameters
e path (str) — the path to determine the url for

* mountpoint (str or None)-the mount point to use, will be automatically detected
if None is given

Returns url matching the path
Return type str

static print_result (result)
Print the result of the IOPlugin to stdout to be picked up by the tool

Parameters result - value to print as a result
Returns None

pull_source_data (inurl, outdir, sample_id, datatype=None)
Transfer the source data from inurl to be available in outdir.

Parameters

3.1.

fastr Package 95

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str

FASTR Documentation, Release 3.0.0

e inurl (str)—the input url to fetch data from
* outdir (str) - the directory to write the data to

* datatype (DataType) — the datatype of the data, used for determining the total con-
tents of the transfer

Returns None

push_sink_data (inpath, outurl, datatype=None)
Write out the sink data from the inpath to the outurl.

Parameters
* inpath (st r) — the path of the data to be pushed
e outurl (str) - the url to write the data to

* datatype (DataType) — the datatype of the data, used for determining the total con-
tents of the transfer

Returns None

put_url (inpath, outurl)
(abstract) Put the files to the external data store.

Parameters
* inpath — path to the local data
e outurl — url to where to store the data in the external data store.

put_value (value, outurl)
(abstract) Put the files to the external data store.

Parameters
¢ value — the value to store

e outurl — url to where to store the data in the external data store.

scheme
(abstract) This abstract property is to be overwritten by a subclass to indicate the url scheme associ-
ated with the IOPlugin.

setup (*args, **kwargs)
(abstract) Setup before data transfer. This can be any function that needs to be used to prepare the
plugin for data transfer.

url_to_path (url)
(abstract) Get the path to a file from a url.

Parameters url (st r) — the url to retrieve the path for
Returns the corresponding path

Return type str

provenance Module

class fastr.core.provenance.Provenance (host=None)

