FASTR Documentation
Release 1.1.2

Marcel Koek and Hakim Achterberg

Mar 15, 2017

Contents

1 FASTR Documentation

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Introduction

1.1.1 Philosophy

1.1.2 System overview
Quick start guide

1.2.1 Installation

1.2.2 Configuration

1.2.3 Creating a simple network
1.2.4 Running a Network
User Manual

1.3.1

1.3.2

1.3.3 Data Flow

1.3.4 DataTypes

1.3.5 Execution

1.3.6 IOPlugins

1.3.7 Naming Convention
1.3.8 Provenance
Command Line Tools

1.4.1

1.4.2

1.4.3 extract_argparse
1.44

1.4.5

1.4.6

1.4.7

1.4.8

Resource File Formats

1.5.1 Config file

1.5.2 Tool description
Resource Reference

1.6.1 CollectorPlugin Reference
1.6.2

1.6.3 FlowPlugin Reference
1.6.4 IOPlugin Reference
1.6.5 Interface Reference

Development and Design Documentation
Sample flow in Fastr
Network Execution

Changelog

1.7.1
1.7.2

verify
webapp

ExecutionPlugin Reference

Tools
Network

1.8.1 1.1.2-2016-12-22 e e e e e e e e e e e
1.8.2 1.1.1-2016-12-22 e e e e
1.8.3 1.1.0-2016-12-08 e e e e e e
2 FASTR User reference
2.1 FastrUserReference 0 i e e e e
3 FASTR REST API reference
3.1 RESTAPL e e e
3.1.1 Quickreference e e e e e e e
4 FASTR Developer Module reference
4.1 fastrPackage L e e e e
4.1.1 fastrPackage. e
412 configmanagerModule e
4.1.3 datatypesModule
414 exceptionsModule e
4.1.5 pluginsModule
416 wversionModule e
4.1.77 Subpackages e e e e
5 Indices and tables
HTTP Routing Table
Python Module Index

47
47
47

49
49
49
60
61
70
76
90
90

181

183

185

FASTR Documentation, Release 1.1.2

FASTR is a framework that helps creating workflows of different tools. The workflows created in FASTR are
automatically enhanced with flexible data input/output, execution options (local, cluster, etc) and solid provenance.

We chose to create tools by creating wrappers around executables and connecting everything with Python.

Fastr is open-source (licensed under the Apache 2.0 license) and hosted on bitbucket at https://bitbucket.org/bigr_
erasmusmc/fastr

For support, go to https://groups.google.com/d/forum/fastr-users

To get yourself a copy:

’hg clone https://bitbucket.org/bigr_erasmusmc/fastr

or if you have a ssh key pair:

’hg clone ssh://hg@bitbucket.org/bigr_erasmusmc/fastr

The official documentation can be found at fastr.readthedocs.io
The Fastr workflow system is presented in the following article:

Hakim Achterberg, Marcel Koek, and Wiro Niessen. “Fastr: a workflow engine for advanced data
flows in medical image analysis.” Frontiers in ICT 3 (2016): 15.

Contents 1

https://bitbucket.org/bigr_erasmusmc/fastr
https://bitbucket.org/bigr_erasmusmc/fastr
https://groups.google.com/d/forum/fastr-users
http://fastr.readthedocs.io
http://journal.frontiersin.org/article/10.3389/fict.2016.00015/full
http://journal.frontiersin.org/article/10.3389/fict.2016.00015/full

FASTR Documentation, Release 1.1.2

2 Contents

cHAPTER 1

FASTR Documentation

Introduction

Fastr is a system for creating workflows for automated processing of large scale data. A processing workflow
might also be called a processing pipeline, however we feel that a pipeline suggests a linear flow of data. Fastr is
designed to handle complex flows of data, so we prefer to use the term network. We see the workflow a network
of processing tool, through which the data will flow.

The original authors worked in a medical image analysis group at Erasmus MC. There they often had to run
analysis that used multiple programs written in different languages. Every time a experiment was set up, the
programs had to be glued together by scripts (often in bash or python).

At some point the authors got fed up by doing these things again and again, and so decided to create a flexible,
powerful scripting base to create these scripts easily. The idea evolved to a framework in which the building blocks
could be defined in XML and the networks could be constructed in very simple scripts (similar to creating a GUI).

Philosophy

Researchers spend a lot of time processing data. In image analysis this often includes using multiple tools in
succession and feeding the output of one tool to the next. A significant amount of time is spent either executing
these tools by hand or writing scripts to automate this process. This process is time consuming and error-prone.
Considering all these tasks are very similar, we want to write one elaborate framework that makes it easy to create
pipelines, reduces the risk of errors, generates extensive logs, and guarantees reproducibility.

The Fastr framework is applicable to multiple levels of usage: from a single researcher who wants to design
a processing pipeline and needs to get reproducible results for publishing; to applying a consolidated image
processing pipeline to a large population imaging study. On all levels of application the pipeline provenance
and managed execution of the pipeline enables you to get reliable results.

System overview

There are a few key requirements for the design of the system:

* Any tool that your computer can run using the command line (without user interaction) should be usable by
the system without modifying the tool.

* The creation of a workflow should be simple, conceptual and require no real programming.

FASTR Documentation, Release 1.1.2

» Networks, once created, should be usable by anyone like a simple program. All processing should be done
automatically.

» All processing of the network should be logged extensively, allowing for complete reproducibility of the
system (guaranteeing data provenance).

Using these requirements we define a few key elements in our system:

* A fastr.Tool is a definition of any program that can be used as part of a pipeline (e.g. a segmentation
tool)

* A fastr.Node is a single operational step in the workflow. This represents the execution of a fastr.
Tool.

e A fastr.Link indicates how the data flows between nodes.

* A fastr.Network is an object containing a collection of fastr.Node and fastr.Link that forma
workflow.

With these building blocks the creation of a pipeline will boil down to just specifying the steps in the pipeline and
the flow of the data between them. For example a simple neuro-imaging pipeline could like like:

fixed img
| output
mOang_img elastix
| output fixed
\ moving directory
param_file + parameters .
sink_trans
| output fixedMask :
- transform » input
movingMask
initial Transform
priority log transformix
threads transform directory sink_image
Hajpinié TCEge output_image input
input_points .
PP output_points
detjac
. output_jac
Jacmat put)
priority output_jacmat
threads log

Fig. 1.1: A simple workflow that registers two images and uses the resulting transform to resample the moving
image.

In Fastr this translates to:
* Create a fastr.Network for your pipeline
e Create a fastr.SourceNode for the fixed image
* Create a fastr.SourceNode for the moving image
* Create a fastr.SourceNode for the registration parameters
e Create a fastr. Node for the registration (in this case elastix)

* Create a fastr. Node for the resampling of the image (in this case transformix)

4 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

* Create a fastr.SinkNode for the transformations to save

* Create a fastr.SinkNode for the transformed images to save

* fastr.Link the output of fixed image source node to the fixed image input of the registration node

* fastr.Link the output of moving image source node to the moving image input of the registration node

e fastr.Link the output of registration parameters source node to the registration parameters input of the
registration node

* fastr.Link the output transform of the registration node to the transform input of the resampling
e fastr.Link the output transform of the registration node to the input of transformation SinkNode
e fastr.Link the output image of the resampling node to the input of image SinkNode

* Runthe fastr.Network for subjects X

This might seem like a lot of work for a registration, but the Fastr framework manages all other things, executes
the pipeline and builds a complete paper trail of all executed operations. The execution can be on any of the
supported execution environments (local, cluster, etc). The data can be imported from and exported to any of the
supported data connections (file, XNAT, etc). It is also important to keep in mind that this is a simple example,
but for more complex pipelines, managing the workflow with Fastr will be easier and less error-prone than writing
your own scripts.

Quick start guide

This manual will show users how to install Fastr, configure Fastr, construct and run simple networks, and add tool
definitions.

Installation
Installing via pip

You can simply install fastr using pip:

pip install fastr

Installing from source code

To install from source code, use Mercurial via the command-line:

hg clone https://<yourusername>@bitbucket.org/bigr_erasmusmc/fastr # for http
hg clone ssh://hg@bitbucket.org/bigr_erasmusmc/fastr # for ssh

If you prefer a GUI you can try TortoiseHG (Windows, Linux and Mac OS X) or SourceTree (Windows and Mac
OS X). The address of the repository is (given for both http and ssh):

https://<yourusername>Q@bitbucket.org/bigr_erasmusmc/fastr
ssh://hg@bitbucket.org/bigr_erasmusmc/fastr

To install to your site packages run:

cd fastr/
pip install

This installs the scripts and packages in the default system folders. For windows this is the python
site-packages directory for the fastr python library and Scripts directory for the executable scripts.

1.2. Quick start guide 5

http://tortoisehg.bitbucket.org/
http://www.atlassian.com/software/sourcetree/overview

FASTR Documentation, Release 1.1.2

For Ubuntu this is in the /usr/local/lib/python2.7/dist-packages/ and /usr/local/bin/
respectively.

Note: If you want to develop fastr, you might want to use pip install -e . to getan editable install

Note: You might want to consider installing fastr in a virtualenv

Note:

* On windows python and the Scripts directory are not on the system PATH by default. You can add
these by going to System -> Advanced Options -> Environment variables.

* On mac you need the Xcode Command Line Tools. These can be installed using the command
xcode—-select —--install.

Configuration

Fastr has defaults for all settings so it can be run out of the box to test the examples. However, when you want to
create your own Networks, use your own data or use your own Tools, it is required to edit your config file.

Fastr will search for a config file named config.py in the SFASTRHOME and ~/ . fastr/ directories. If both
config files contain values for a single settings, the version in ~/ . fastr/ has priority.

For a sample configuration file and a complete overview of the options in config. py see the Config file section.

Creating a simple network

If Fastr is properly installed and configured, we can start creating networks. Creating a network is very simple:

>>> import fastr

>>> network = fastr.Network ()

Now we have an empty network, the next step is to create some nodes and links. Imagine we want to create the
following network:

sourcel

Output addint

\ sink 1
left_hand

_ result — Input
constl / right_hand
[CT] 030, 37, [71]

Creating nodes

We will create the nodes and add them to the network. The easiest way to do this is via the network create_
methods. Let’s create two source nodes, one normal node and one sink:

6 Chapter 1. FASTR Documentation

http://docs.python-guide.org/en/latest/dev/virtualenvs/

FASTR Documentation, Release 1.1.2

>>> sourcel = network.create_source('Int', id_='sourcel')

>>> constantl = network.create_constant('Int', [1, 3, 3, 7], id_='constl')

>>> sinkl = network.create_sink ('Int', id_='sinkl")

>>> addint = network.create_node ('AddInt', id_='addint')

The functions Network.create_ source, Network.create constant, Network.

create_source and Network.create_source are shortcut functions for calling the SourceNode,
ConstantNode, SinkNode and Node constructors and adding them to the network. A SourceNode and
SinkNode only require the datatype to be specified. A ConstantNode requires both the datatype and the data
to be set on creation. A Node requires a Tool template to be instantiated from. The id__ option is optional for
all three, but makes it easier to identify the nodes and read the logs.

There is an easier way to add a constant to an input, by using a shortcut method. If you assigna 1ist or tuple
to an item in the input list, it will automatically create a ConstantNode and a Link between the contant and
the input:

>>> addint.inputs['right_hand'] = [1, 3, 3, 7]

The created constant would have the id addint___right_hand__const as it automatically names the new
constant Snodeid__S$inputid__ const.

In an interactive python session we can simply look at the basic layout of the node using the repr function. Just
type the name of the variable holding the node and it will print a human readable representation:

>>> sourcel
SourceNode sourcel (tool: source v1.0)
Inputs | Outputs

>>> addint
Node addint (tool: AddInt v1.0)

Inputs | Outputs
left_hand (Int) | result (Int)
right_hand (Int) |

This tool has inputs of type Int, so the sources and sinks need to have a matching datatype.

The tools and datatypes available are stored in fastr.toollist and fastr.typelist. These variables
are created when fastr is imported for the first time. They contain all the datatype and tools specified by the
xml files in the search paths. To get an overview of the tools and datatypes loaded by fastr:

>>> fastr.toollist

ToolManager

Add v0.1 : /home/hachterberg/dev/fastr-
—develop/fastr/fastr/resources/tools/add/v1_0/add.xml

AddImages v0.1 : /home/hachterberg/dev/fastr-
—develop/fastr/fastr/resources/tools/addimages/vl_0/addimages.xml

AddInt v0.1 : /home/hachterberg/dev/fastr-

—develop/fastr/fastr/resources/tools/addint/v1_0/addint.xml

>>> fastr.typelist

DataTypeManager

AnyType : <class 'fastr.datatypes.AnyType'>
Boolean : <class 'fastr.datatypes.Boolean'>
Directory : <class 'fastr.datatypes.Directory'>
Float : <class 'fastr.datatypes.Float'>

Int : <class 'fastr.datatypes.Int'>
String : <class 'fastr.datatypes.String'>

The fastr.toollist variable contains all tools that Fastr could find during initalization. Tools can be chosen
in two tways:

1.2. Quick start guide 7

https://docs.python.org/2.7/library/functions.html#list

FASTR Documentation, Release 1.1.2

e toollist [1id] which returns the newest version of the tool
* toollist[id, version] which returns the specified version of the tool
Creating links

So now we have a network with 4 nodes defined, however there is no relation between the nodes yet. For this we
have to create some links.

>>> 1linkl network.create_link (sourcel.output, addint.inputs['left_hand'])
>>> 1ink2 network.create_link (constantl.output, addint.inputs['right_hand'])
>>> 1ink3 = network.create_link (addint.outputs['result'], sinkl.inputs['input'])

This asks the network to create links and immediatly store them inside the network. A link always points from an
Output to an Input (note that SubOutput or Sublnputs are also valid). A SourceNode has only 1 output which is
fixed, so it is easy to find. However, addImage has two inputs and one output, this requires us to specify which
output we need. A normal node has a mapping with Inputs and one with Outputs. They can be indexed with the
approriate id’s. The function returns the links, but you only need that if you are planning to change a link. If not,
it is possible to use a short-hand which creates a link but gives you no easy access to it for later.

>>> addint.inputs(['left_hand'] = sourcel.output
>>> addint.inputs|['right_hand'] = constantl.output
>>> sinkl.inputs|['input'] = addint.outputs['result']

Create an image of the Network

For checking your Network it is very useful to have a graphical representation of the network. This can be achieved
using the Network . draw_network method.

>>> network.draw_network ()
' /home/username/network_layout.dot.svg'

This will create a figure in the path returned by the function that looks like:

sourcel

Output addint

\ sink 1
left_hand

. result — Input
constl / right_hand
([T, 030, 37, ['71]

Note: for this to work you need to have graphviz installed

Running a Network

Running a network locally is almost as simple as calling the Net work . execute method:

>>> source_data = {'sourcel': {'sl': 4, 's2': 5, '"s3': 6, 's4': 7}}
>>> sink_data = {'sinkl': 'vfs://tmp/fastr_result_{sample_id}.txt'}
>>> network.execute (source_data, sink_data)

8 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

As you can see the execute method needs data for the sources and sinks. This has to be supplied in two dict that
have keys matching every source/sink id in the network. Not supplying data for every source and sink will result
in an error, although it is possible to pass an empty 1ist to a source.

Note: The values of the source data have to be simple values or urls and values of the sink data have to be url
templates. To see what url schemes are available and how they work see /OPlugin Reference. For the sink url
templates see SinkNode. set_data

For source nodes you can supply a 1ist ora dict with values. If you supply a dict the keys will be interpreted
as sample ids and the values as the corresponding values. If you supply a 1ist, keys will be generated in the
form of 1d_ {N} where N will be index of the value in the list.

Warning: As a dict does not have a fixed order, when a dict is supplied the samples are ordered by key
to get a fixed order! For a 1ist the original order is retained.

For the sink data, an url template has to be supplied that governs how the data is stored. The mini-lanuage (the
replacement fields) are described in the SinkNode. set_data method.

To rerun a stopped/crashed pipeline check the user manual on Continuing a Network

User Manual

In this chapter we will discuss the parts of Fastr in more detail. We will give a more complete overview of the
system and describe the more advanced features.

Tools

The Tools in Fastr are the building blocks of each workflow. A tool represents a program/script/binary that can
be called by Fastr and can be seens as a template. A Node can be created based on a Too 1. The Node will be one
processing step in a workflow, and the tool defines what the step does.

On the import of Fastr, all available Too1s will be loaded in a default Tool1Manager that can be accessed via
fastr.toollist. To get an overview of the tools in the system, just print the repr () of the TooIManager:

>>> fastr.toollist

AddImages v0.1 : /home/hachterberg/dev/fastr/fastr/resources/
—tools/addimages/vl_0/addimages.xml
AddInt v0.1 : /home/hachterberg/dev/fastr/fastr/resources/

—tools/addint/v1l_0/addint.xml

As you can see it gives the tool id, version and the file from which it was loaded for each tool in the system. To
view the layout of a tool, just print the repr () of the tool itself.

>>> fastr.toollist['AddInt']

Tool AddInt v0.1 (Add two integers)
Inputs | Outputs

left_hand (Int) | result (Int)

right_hand (Int) |

To add a Too to the system a file should be added to one of the path in fastr.config.tools_path. The
structure of a tool file is described in Tool description

1.3. User Manual 9

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#repr
https://docs.python.org/2.7/library/functions.html#repr

FASTR Documentation, Release 1.1.2

Create your own tool

There are 4 steps in creating a tool:

1. CREATE FOLDERS. We will call the tool ThrowDie. Create the folder throw_die in the folder fastr-tools.

In this folder create another folder called bin.

. PLACE EXECUTABLE IN CORRECT PLACE. In this example we will use a snippet of executable python

code:

#!/usr/bin/env python
import sys

import random

import json

if (len(sys.argv) > 1):

sides = int (sys.argv[1l])
else:

sides = 6
result = [int (random.randint (1, sides))]
print ('RESULT={}"'.format (json.dumps (result)))

Save this text in a file called throw_die.py

Place the executable python script in the folder throw_die/bin

. CREATE AND EDIT XML FILE FOR TOOL.

Put the following text in file called throw_die.xml.

<tool id="ThrowDie" description="Simulates a throw of a die. Number of sides_
—o0f the die is provided by user"
name="throw_die" version="1.0">
<authors>
<author name="John Doe" />
</authors>
<command version="1.0" >
<authors>
<author name="John Doe" url="http://a.b/c" />
</authors>
<targets>
<target arch="x" bin="throw_die.py" interpreter="python" os="*x" paths=
—'bin/'/>
</targets>
<description>
throw_die.py number_of_sides
output = simulated die throw
</description>
</command>
<interface>
<inputs>
<input cardinality="1" datatype="Int" description="Number of die sides"_
—id="die_sides" name="die sides" nospace="False" order="0" required="True"/>
</inputs>
<outputs>
<output id="output" name="output value" datatype="Int" automatic="True" _
—cardinality="1" method="json" location=""RESULT=(.*)S$" />
</outputs>
</interface>
</tool>

Put throw_die.xml in the folder example_tool. All Attributes in the example above are required. For a
complete overview of the xml Attributes that can be used to define a tool, check the Tool description. The
most important Attributes in this xml are:

10

Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

id : The id is used in in FASTR to create an instance of your tool, this_
—name will appear in the toollist when you type fastr.toollist.

targets : This defines where the executables are located and on which platform
—they are available.

inputs : This defines the inputs that you want to be used in FASTR, how FASTR_
—should use them and what data is allowed to be put in there.

More xml examples can be found in the fastr-tools folder.

4. EDIT CONFIGURATION FILE. Append the line [PATH TO LOCATION OF FASTR-TOOLS]/

fastr-tools/throw_die/ to the the config.py (located in ~/.fastr/ directory) to the
tools_path. See Config file for more information on configuration.

You should now have a working tool. To test that everything is ok do the following in python:

>>> import fastr
>>> fastr.toollist

Now a list of available tools should be produced, including the tool throw_die

To test the tool create the script test_throwdie.py:

import fastr

network = fastr.Network ()

sourcel = network.create_source (fastr.typelist['Int'], id_='sourcel')
sinkl = network.create_sink (fastr.typelist['Int'], id_='sinkl")

throwdie = network.create_node (fastr.toollist['ThrowDie'], id_="'throwdie')
linkl = network.create_link (sourcel.output, throwdie.inputs['die_ sides'])
1link2 = network.create_link (throwdie.outputs|['output'], sinkl.inputs|
—'input'])

source_data = {'sourcel': {'sl': 4, 's2': 5, 's3': 6, 'sd4': 7T}}

sink_data {'sinkl': 'vfs://tmp/fastr_result_{sample_id}.txt'}
network.draw_network ()

network.execute (source_data, sink_data)

Call the script from commandline by

>>> python test_throwdie.py

An image of the network will be created in the current directory and result files will be put in the tmp directory. The
result files are called fastr_result_sl.txt, fastr_result_s2.txt,fastr_result_s3.txt,and
fastr_result_s4.txt

Note: If you have code which is operating system depend you will have to edit the xml file. The following gives
and example of how the elastix tool does this:

<targets>

<target os="windows" arch="x" bin="elastix.exe">
<paths>
<path type="bin" value="vfs://apps/elastix/4.7/install/" />
<path type="1ib" value="vfs://apps/elastix/4.7/install/lib" />
</paths>
</target>
<target os="linux" arch="x+" modules="elastix/4.7" bin="elastix">
<paths>
<path type="bin" value="vfs://apps/elastix/4.7/install/" />
<path type="1ib" value="vfs://apps/elastix/4.7/install/lib" />
</paths>
</target>
<target os="darwin" arch="+" modules="elastix/4.7" bin="elastix">
<paths>
<path type="bin" value="vfs://apps/elastix/4.7/install/" />

1.3.

User Manual 11

FASTR Documentation, Release 1.1.2

<path type="1ib" value="vfs://apps/elastix/4.7/install/lib" />
</paths>
</target>
</targets>

vfs is the virtual file system path, more information can be found at VirtualFileSystem.

Network

A Network represented an entire workflow. It hold all Nodes, Link s and other information required to execute
the workflow. Networks can be visualized as a number of building blocks (the Nodes) and links between them:

target_img

‘ output [N]

template_img

‘ output [M] elastix
\ [N] fixed_image
param_file [M] moving_image directory

‘ output [O] =t [R] parameters

fixed_mask

- transform [NxM]
moving_mask
initial_transform transformix

priority log_file

[NxM] transform directory combine

threads [M] image image [NxM] — [N] images EILS maee
mask_image polnts points [Prmethod | hard-segment [N] —»{ [N] input |
- determinant_of_jacobian_flag [Q] number_of_classes

determinant_of_jacobian
oupul N jacobian_matrix_flag ! =01 !

original_labels soft_segment

jacobian_matrix

priority
threads log_file

substitute_labels

const_combine_method
[['VOTE'] [P]

const_combine_number_of_classes

(311l

An empty network is easy to create, all you need is to name it:

>>> network = fastr.Network (id_="network name™)

The Network is the main interface to Fastr, from it you can create all elements to create a workflow. In the
following sections the different elements of a Net work will be described in more detail.

Node

Nodes are the point in the Network where the processing happens. A Node takes the input data and executes
jobs as specified by the underlying Tool. A Nodes can be created in a two different ways:

>>> nodel = fastr.Node(tool, id_='nodel', parent=network)
>>> node2 = network.create_node(tool, id_='node2', stepid='stepl')

In the first way, we specifically create a Node object. We pass it an 1d and the parent network. If the parent
is None the fastr.curent_network will be used. The Node constructor will automaticaly add the new
node to the parent network.

Note: For a Node, the tool can be given both as the Too1 class or the id of the

tool.

The second way, we tell the network to create a Node. The network will automatically assign itself as the
parent. Optionally you can add define a stepid for the node which is a logical grouping of Nodes that is
mostly used for visualization.

12 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

A Node contains Tnputs and Outputs. To see the layout of the Node one can simply look at the repr ().

>>> addint = fastr.Node (fastr.toollist['AddInt'], id_='addint"')
>>> addint
Node addint (tool: AddInt v1.0)
Inputs | Outputs
left_hand (Int) | result (Int)
right_hand (Int) |

The inputs and outputs are located in mappings with the same name:

>>> addint.inputs

InputDict ([('left_hand', <Input: fastr:///networks/unnamed_network/nodelist/addint/
—inputs/left_hand>), ('right_hand', <Input: fastr:///networks/unnamed_network/
—nodelist/addint/inputs/right_hand>)])

>>> addint.outputs
OutputDict ([('result', Output fastr:///networks/unnamed_network/nodelist/addint/
—outputs/result)])

The InputDict and OutputDict are classes that behave like mappings. The InputDict also facilitaties
the linking shorthand. By assigning an Output to an existing key, the TnputDict will create a L1ink between
the TnputDict and Output.

SourceNode

A SourceNode is a special kind of node that is the start of a workflow. The SourceNodes are given data at
run-time that fetched via TOPIugins. On create, only the datatype of the data that the SourceNode supplied
needs to be known. Creating a SourceNode is very similar to an ordinary node:

>>> sourcel = fastr.SourceNode ('Int', id_='sourcel')
>>> source2 = network.create_source (fastr.typelist['Int'], id_='source2',6 stepid=
—'stepl')

In both cases, the source is automatically automaticall assigned to a network. In the first case to the fastr.
current_network and in the second case to the network used to call the method. A SourceNode only
has a single output which has a short-cut access via source.output.

Note: For a source or constant node, the datatype can be given both as the BaseDataType class or the id of
the datatype.

ConstantNode

A ConstantNode is another special node. It is a subclass of the SourceNode and has a similar function.
However, instead of setting the data at run-time, the data of a constant is given at creation and saved in the object.
Creating a ConstantNode is similar as creating a source, but with supplying data:

>>> constantl = fastr.ConstantNode ('Int', [42], id_='constantl')
>>> constant2 = network.create_constant ('Int', [42], id_='constant2', stepid='stepl

<)

Often, when a ConstantNode is created, it is created specifically for one input and will not be reused. In this
case there is a shorthand to create and link a constant to an input:

>>> addint.inputs(['valuel'] = [42]

will create a constant node with the value 42 and create a link between the output and input addint .valuel.

1.3. User Manual 13

https://docs.python.org/2.7/library/functions.html#repr

FASTR Documentation, Release 1.1.2

SinkNode

The SinkNode is the counter-part of the source node. Instead of get data into the workflow, it saves the data
resulting from the workflow. For this a rule has to be given at run-time that determines where to store the data.
The information about how to create such a rule is described at SinkNode. set_data. At creation time, only
the datatype has to be specified:

>>> sinkl fastr.Sink ('Int', id_='"sinkl")
>>> sink2 = network.create_sink (fastr.typelist['Int'], id_='sink2', stepid='stepl')

Link

Links indicate how the data flows between Nodes. Links can be created explicitly using on of the following:

>>> link = fastr.Link (nodel.outputs['image'], node2.inputs|['image'])
>>> link = network.create_link (nodel.outputs['image'], node2.inputs['image'])

or can be create implicitly by assigning an Output to an Input inthe TnputDict.

This style of assignment will create a Link similar to above
>>> node2.inputs['image'] = nodel.outputs|['image']

Note that a Link is also create automatically when using the short-hand for the ConstantNode

Data Flow

The data enters the Network via SourceNodes, flows via other Nodes and leaves the Network via
SinkNodes. The flow between Nodes goes from an Output via a Link to an Tnput. In the following
image it is simple to track the data from the SourceNodes at the left to the SinkNodes at right side:

sourcel

output addint

\ sink 1
left_hand

. result — input
constl / right_hand
[(['1'], ['3'], ['3'], ['7']]

Note that the data in Fastr is stored in the Output and the Link and Tnput just give access to it (possible while
transforming the data).

Data flow inside a Node

In a Node all data from the Tnputs will be combined and the jobs will be generated. There are strict rules to
how this combination is performed. In the default case all inputs will be used pair-wise, and if there is only a
single value for an input, it it will be considered as a constant.

To illustrate this we will consider the following Too1 (note this is a simplified version of the real tool):

>>> fastr.toollist['Elastix']
Tool Elastix v4.8 (Elastix Registration)
Inputs Outputs

14 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

fixed_image (ITKImageFile) | transform
— (ElastixTransformFile)

moving_image (ITKImageFile)

parameters (ElastixParameterFile)

Also it is important to know that for this tool (by definition) the cardinality of the transform Output will
match the cardinality of the parameters Inputs

If we supply a Node based on this Too1 with a single sample on each Tnput, there will be one single matching
Output sample created:

(fo)

(my) M (tfo,mo,po)

(Po)

If the cardinality of the parameters sample would be increased to 2, the resulting t rans form sample would
also become 2:

(fo)

(my) M(tm,mo,po: ti0,mo,p1)

(Por P1)

Now if the number of samples on fixed_image would be increased to 3, the moving_image and
parameters will be considered constant and be repeated, resulting in 3 t rans form samples.

(fo) (my) (t50,mo,p0)
(f1) m (tr1,mo,p0)
() (Po) (t2,m0,00)

Then if the amount of samples for moving_image is also increased to 3, the moving_image and
fixed_image will be used pairwise and the parameters will be constant.

(fo) (mo) (th,mO,pOI th,mO,pl)

(fl) (ml) w}(tfl,ml,pOI tfl,ml,pl)

(f2) (m,) (tfz,mz,pO; tf2,m2,p1)
(Por P1)

Advanced flows in a Node

Sometimes the default pairwise behaviour is not desirable. For example if you want to test all combinations of
certain input samples. To achieve this we can change the input_group of ITnputs to set them apart from the
rest. By default all Tnputs are assigned to the default input group. Now let us change that:

>>> node = network.create_node('Elastix', id_='elastix')
>>> node.inputs['moving_image'].input_group = 'moving'

1.3. User Manual 15

FASTR Documentation, Release 1.1.2

This will result in moving_image to be put in a different input group. Now if we would supply fixed_image
with 3 samples and moving_image with 4 samples, instead of an error we would get the following result:

(fo) (my) (t0,mo,po) (%0,m1,p0) (%0, m2,p0) (t0,m3,p0)

(f1) ® (m,) M (t:1,mo,p0) (t1,m1,00) (t1,m2,00) (t1,m3,p0)

(f2) (my) (tr2,m0,00) (tr2,m1,00) (r2,m2,00) (tr2,m3,00)
o

Warning: TODO: Expand this section with the merging dimensions

Data flows in a Link
As mentioned before the data flows from an Output to an Tnput throuhg a Link. By default the 7.7 nk passed
the data as is, however there are two special directives that change the shape of the data:

1. Collapsing flow, this collapses certain dimensions from the sample array into the cardinality. As a user you
have to specify the dimension or tuple of dimensions you want to collapse.

dim?2

(ao) I ‘2| (a0 ,bos Co)
collapse . c| 9o,P0r Co
(b,) (by) D > = (b,, c;)

(co) (cy)

This is useful in situation where you want to use a tool that aggregates over a number of samples (e.g. take
a mean or sum).

diml

To achieve this you can set the collapse property of the Link as follows:

>>> link.collapse = 'diml'
>>> link.collapse = ('diml', 'dim2') # In case you want to collapse multiple_,
—dimensions

2. Expanding flow, this turns the cardinality into a new dimension. The new dimension will be named after the
Output from which the link originates. It will be in the form of {nodeid}__ {outputid}

dim?2

— (ao) — (ao)
.g (bo, b,) M»g (bo) (by)
(cos €1) (co) (c1)

This flow directive is useful if you want to split a large sample in multiple smaller samples. This could be
because processing the whole sample is not feasible because of resource constraints. An example would be
splitting a 3D image into slices to process separately to avoid high memory use or to achieve parallelism.

To achieve this you can set the expand property of the Link to True:

>>> link.expand = True

Note: both collapsing and expanding can be used on the same link, it will executes similar to a expand-collapse
sequence, but the newly created expand dimension is ignored in the collapse.

16 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

— (aop) ~

El (by, by) |-SXpand &collapse o ¢ (ag ,bo, <o)

S o -1 (diml) ™ 5| (by, c;)
(Cos €1)

>>> link.collapse = 'diml'

>>> link.expand = True

Data flows in an Input

If an Tnputs has multiple Links attached to it, the data will be combined by concatenating the values for each
corresponding sample in the cardinality.

Broadcasting (matching data of different dimensions)

Sometimes you might want to combine data that does not have the same number of dimensions. As long as all
dimensions of the lower dimensional datasets match a dimension in the higher dimensional dataset, this can be
achieved using broadcasting. The term broadcasting is borrowed from NumPy and described as:

“The term broadcasting describes how numpy treats arrays with different shapes during arithmetic
operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so
that they have compatible shapes.”

—NumPy manual on broadcasting

In fastr it works similar, but to combined different Inputs in an InputGroup. To illustrate broadcasting it is best to
use an example, the following network uses broadcasting in the t ransformix Node:

target_img

[output [N]

template_img

[output [M] elastix
\ [N] fixed_image

param_file [M] moving_image directory
[omput [O] =t [R] par: s
fixed_mask
transform [NxM]
moving_mask
initial_transform transformix
priority log_file [NxM] transform directory combine

threads [M] image image [NxM] [[N] images sink_image
i hard t [N] — [N] input
T - po;nls . . S [P] method ard_segment [N] [N] inpu
- eterminant_of_jacobian_flag
output [M] determinant_of_jacobian [it i s

jacobian_matrix_flag original_labels

jacobian_matrix soft_segment

priority
threads log_file

substitute_labels

const_combine_method
[['VOTET] [P]

const_combine_number_of_classes

[I'3711Q]

As you can see this visualization prints the dimensions for each Input and Output (e.g. the elastix.
fixed_image Input has dimensions [N]). To explain what happens in more detail, we present an image il-
lustrating the details for the samples in elastix and transformix:

1.3. User Manual 17

http://www.numpy.org/
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.broadcasting.html

FASTR Documentation, Release 1.1.2

g

3 (o) 2 (mg)

X S

Ll:| (f,) X g (m,)

.T% (F,) o (ma)
S (m3)

{ Node: elastix

g’ (i0) - dim_moving
2 (i) e (t50,m0,p0) (tro, p0) (t10,m2,00) (t10,13,00)
EI (in2) u;l (t1,0,p0) (tr1,1,00) (tr1,m2,00) (tr1,3,00)
._C% (im3) Eo] (tf2,m0,p0) (tf2, ,pO) (tf2,m2,p0) (tf2,m3,p0)
v Node: transformix
- dim_moving
o) (¥r0,m0,p0) (ifo0, 1 p0) (if0,m2,00) (it0,3,00)
EI (iit1,m0,p0) (if1,11,p0) (i1,m2,00) (i1,3,00)
5 (¥r2,m0,00) (2, o) (ir2,m2,00) (i52,003,00)

In the figure the moving_image (and references to it) are identified with different colors, so they are easy to
track across the different steps.

At the top the Inputs for the elastix Node are illustrated. Because the input groups a set differently, output
samples are generated for all combinations of fixed_image and moving_image (see Advanced flows in a
Node for details).

In the transformix Node, we want to combine a list of samples that is related to the moving_image (it has
the same dimension name and sizes) with the resulting t ransform samples from the elastix Node. As you
can see the sizes of the sample collections do not match ([N] vs [N x M]). This is where broadcasting comes
into play, it allows the system to match these related sample collections. Because all the dimensions in [N] are
known in [N x M], it is possible to match them uniquely. This is done automatically and the result is a new
[N xM] sample collection. To create a matching sample collections, the samples in the t ransformix . image
Input are reused as indicated by the colors.

Warning: Note that this might fail when there are data-blocks with non-unique dimension names, as it will
be not be clear which of the dimensions with identical names should be matched!

DataTypes

In Fastr all data is contained in object of a specific type. The types in Fastr are represented by classes that subclass
BaseDataType. There are a few different other classes under BaseDataType that are each a base class for a
family of types:

* DataType — The base class for all types that hold data

— ValueType — The base class for types that contain simple data (e.g. Int, String) that can be repre-
sented as a str

— EnumType — The base class for all types that are a choice from a set of options

— URLType — The base class for all types that have their data stored in files (which are referenced by
URL)

* TypeGroup — The base class for all types that actually represent a group of types

18 Chapter 1. FASTR Documentation

https://docs.python.org/2.7/library/stdtypes.html#set

FASTR Documentation, Release 1.1.2

@ fastr.core serializable.Serializable

T

e fastr.core.datatypemanager.BaseDataType

=

e fastr.core.datatypemanager.DataType o fastr.core.datatypemanager. TypeGroup

G fastr.core.datatypemanager.EnumType o fastr.core.datatypemanager.ValueType G fastr.core.datatypemanager.URLType

Fig. 1.2: The relation between the different DataType classes

The types are defined in xml files and created by the DataTypeManager. The DataTypeManager acts as a
container containing all Fastr types. It is automatically instantiated as fastr.typelist. In fastr the created
DataTypes classes are also automatically place in the fastr.datat ypes module once created.

Resolving Datatypes
Outputs in fastr can have a TypeGroup or a number of DataTypes associated with them. The final
DataType used will depend on the linked Tnputs. The DataType resolving works as a two-step procedure.
1. All possible DataTypes are determined and considered as options.
2. The best possible DataType from options is selected for non-automatic Outputs

The options are defined as the intersection of the set of possible values for the Output and each separate Tnput
connected to the Output. Given the resulting options there are three scenarios:

* If there are no valid DataTypes (options is empty) the result will be None.

e If there is a single valid DataType, then this is automatically the result (even if it is not a preferred
DataType).

o If there are multiple valid DataTypes, then the preferred DataTypes are used to resolve conflicts.
There are a number of places where the preferred DataTypes can be set, these are used in the order as given:
1. The preferred keyword argument to match_types

2. The preferred types specified in the fastr.config

Execution

Executing a Network is very simple:

>>> source_data = {'source_idl': ['vall', 'val2'],
'source_id2': {'id3': 'val3', 'id4': 'vald'}}
>>> sink_data = {'sink_idl': 'vfs://some_output_location/{sample_id}/file.txt"'}

>>> network.execute (source_data, sink_data)

The Network.execute method takes a dict of source data and a dict sink data as arguments. The dictio-
naries should have a key for each SourceNode or SinkNode.

TODO:add .. figure:: 1images/execution_layers.x*

The execution of a Network uses a layered model:

1.3. User Manual 19

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

* Network.execute will analyze the Network and call all Nodes.
* Node.execute will create jobs and fill their payload

* execute_ job will execute the job on the execute machine and resolve any deferred values (val://
urls).

* Tool.execute will find the correct target and call the interface and if required resolve vfs: // urls
e Interface.execute will actually run the required command(s)

The ExecutionPlugin will call call the executionscript. py for each job, passing the job as a gzipped
pickle file. The executionscript.py will resolve deferred values and then call Tool.execute which
analyses the required target and executes the underlying Tnterface. The Interface actually executes the job
and collect the results. The result is returned (via the Tool) to the executionscript.py. There we save the
result, provenance and profiling in a new gzipped pickle file. The execution system will use a callback to load the
data back into the Network.

The selection and settings of the ExecutionPlugin are defined in the fastr config.
Continuing a Network
Normally a random temporary directory is created for each run. To continue a previously stopped/crashed network,

you should call the Net work . execute method using the same temporary directory(tmp dir). You can set the
temporary directory to a fixed value using the following code:

>>> tmpdir = '/tmp/example_network_rerun'
>>> network.execute (source_data, sink_data, tmpdir=tmpdir)

Warning: Be aware that at this moment, Fastr will rerun only the jobs where not all output files are present
or if the job/tool parameters have been changed. It will not rerun if the input data of the node has changed or
the actual tools have been adjusted. In these cases you should remove the output files of these nodes, to force
a rerun.

IOPlugins

Sources and sink are used to get data in and out of a Net work during execution. To make the data retrieval and
storage easier, a plugin system was created that selects different plugins based on the URL scheme used. So for
example, a url starting with vfs: // will be handles by the VirtualFileSystem plugin. A list of all the
IOPlugins known by the system and their use can be found at /OPlugin Reference.

Naming Convention

For the naming convention of the tools we tried to stay close to the Python PEP 8 coding style. In short, we
defined toolnames as classes so they should be UpperCamelCased. The inputs and outputs of a tool we considered
as functions or method arguments, these should we named lower_case_with_underscores.

An overview of the mapping of Fastr to PEP 8:

Fastr construct | Python PEPS8 equivalent | Examples

Network.id brain_tissue_segmentation
module

Tool.id 1 BrainExtractionTool, ThresholdImage
class

Node.id brain_extraction, threshold_mask

variable name

Input/Output.id image, number_of_classes, probability_image

method

Furthermore there are some small guidelines:

20 Chapter 1. FASTR Documentation

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008#prescriptive-naming-conventions
https://www.python.org/dev/peps/pep-0008#package-and-module-names
https://www.python.org/dev/peps/pep-0008#class-names
https://www.python.org/dev/peps/pep-0008#global-variable-names
https://www.python.org/dev/peps/pep-0008#method-names-and-instance-variables

FASTR Documentation, Release 1.1.2

* No input or output in the input or output names. This is already specified when setting or getting the data.
* Add the type of the output that is named. i.e. enum, string, flag, image,

— No File in the input/output name (Passing files around is what Fastr was developed for).

— No type necessary where type is implied i.e. lower_threshold, number_of_levels, max_threads.

* Where possible/useful use the fullname instead of an abbreviation.

Provenance

For every data derived data object, Fastr records the Provenance. The SinkNode write provenance records next
to every data object it writes out. The records contain information on what operations were performed to obtain
the resulting data object.

W3C Prov
The provenance is recorded using the W3C Prov Data Model (PROV-DM). Behind the scences we are using the
python prov implementation.

The PROV-DM defines 3 Starting Point Classes and and their relating properties. See Fig. 1.3 for a graphic
representation of the classes and the relations. *

Fig. 1.3: The three Starting Point classes and the properties that relate them. The diagrams in this document
depict Entities as yellow ovals, Activities as blue rectangles, and Agents as orange pentagons. The responsibility
properties are shown in pink.*?

Implementation

In the workflow document the provenance classes map to fastr concepts in the following way:
Agent Fastr, Networks, Tools, Nodes
Activity Jobs

Entities Data
Usage
The provenance is stored in ProvDocument objects in pickles. The convenience command line tool fastr prov

can be used to extract the provenance in the PROV-N notation and can be serialized to PROV-JSON and PROV-
XML. The provenance document can also be vizualized using the fastr prov command line tool.

O This picture and caption is taken from http://www.w3.org/TR/prov-o/ . “Copyright © 2011-2013 World Wide Web Consortium, (MIT,
ERCIM, Keio, Beihang). http://www.w3.org/Consortium/Legal/2015/doc-license*

1.3. User Manual 21

https://en.wikipedia.org/wiki/Provenance
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://github.com/trungdong/prov
http://www.w3.org/TR/prov-n/
http://www.w3.org/Submission/prov-json/
http://www.w3.org/TR/prov-xml/
http://www.w3.org/TR/prov-xml/
http://www.w3.org/TR/prov-o/
http://www.w3.org/Consortium/Legal/2015/doc-license

FASTR Documentation, Release 1.1.2

Command Line Tools

command description
cat Print information from a job file
execute Execute a fastr job file
extract_argparse | Create a stub for a Tool based on a python script using argparse
prov Get PROV information from the result pickle.
run Run a Network from the commandline
testtool Run the tests of a tool to verify the proper function
verify Print information from a job file
webapp Start the fastr webapp and open in a new browser tab
cat

usage: fastr cat [-h] result.pickle.gz path

Required Arguments
result.pickle.gz result file to cat
path path of the data to print

execute

Execute a job or network from commandline

usage: fastr execute [-h] [JOBFILE]

Required Arguments

JOBFILE File of the job to execute (default ./__fastr_command__.pickle.gz)

extract_argparse

usage: fastr extract_argparse [-h] SCRIPT.py TOOL.xml

Required Arguments
SCRIPT.py Python script to inspect
TOOL.xml created Tool stub

prov

Get PROV information from the result pickle. When no options are given, the provenance syntax is printed to
stdout in PROV-JSON format.

usage: fastr prov [-h] [-so SYNTAX_OUT_FILE] [-sf SYNTAX FORMAT] [-i INDENT]
[-vo VISUALIZE_OUT_FILE]
[RESULTFILE]

Required Arguments
RESULTFILE File of the job to execute (default ./__fastr_result__.pickle.gz)
Optional Arguments

-s0, --syntax-out-file Write the syntax to file.

22 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

-sf="json”, --syntax-format=""json” Choices are: [json], provn or xml
-i=2, --indent=2 Indent size of the serialized documents.

-vo, --visualize-out-file Visualize the provenance. The most preferred format is svg. You
can specify any format pydot supports. Specify the format by postfix-

ing the filename with an extension.

run

Execute a job or network from commandline

usage: fastr run [-h] NETWORKFILE

Required Arguments
NETWORKFILE File of the network to execute

testtool

Run the tests for a Tool to check the function

usage: fastr testtool [-h] TOOL

Required Arguments
TOOL the id of the tool to test

verify

usage: fastr verify [-h] TYPE path

Required Arguments
TYPE Type of resource to verify (e.g. tool)

Possible choices: tool

path path of the resource to verify

webapp

Fastr web client

usage: fastr webapp [-h] [-d] [-o]

Optional Arguments
-d=False, --debug=False Debug mode.

-o=False, --openpage=False Open web page after start.

Resource File Formats

This chapter describes the various files fastr uses. The function and format of the files is described allowing the
user to configure fastr and add DataTypes and Tools.

1.5. Resource File Formats 23

FASTR Documentation, Release 1.1.2

Config file

Fastr reads the config files from the following locations by default (in order):
* SFASTRHOME/config.py
e ~/.fastr/config.py

Reading a new config file change or override settings, making the last config file read have the highest priority.
All settings have a default value, making config files and all settings within optional.

Example config file

Here is a minimal config file:

Enable debugging output
debug = False

Define the path to the tool definitions

tools_path = ['/path/to/tools’',
'/path/to/other/tools'] + tools_path
types_path = ['/path/to/datatypes’,

'/path/to/other/datatypes'] + types_path

Specify what your preferred output types are.
preferred_types += ["NiftiImageFileCompressed",
"NiftiImageFile"]

Set the tmp mount
mounts['tmp'] = '/path/to/tmpdir'

Format

The config file is actually a python source file. The next syntax applies to setting configuration values:

Simple values
float_value = 1.0

int_value = 1
str_value = "Some value"
other_str_value = 'name'.capitalize()

List—-like values

list_value = ['over', 'ride', 'values']
other_list_value.prepend('first')
other_list_value.append('list")

Dict—-1like values
dict_value = {'this': 1, 'is': 2, 'fixed': 3}
other_dict_value['added'] = 'this key'

Note: Dictionaries and list always have a default, so you can always append or assign elements to them and do
not have to create them in a config file. Best practice is to only edit them unless you really want to block out the
earliers config files.

Most operations will be assigning values, but for list and dict values a special wrapper object is used that allows
manipulations from the default. This limits the operations allowed.

List values in the config. py have the following supported operators/methods:

24 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

o+

[J—

add___

and ___radd___

e +=o0or__iadd___

* append
* prepend

e extend

Mapping (dict-like) values in the config.py have the following supported operators/methods:

* update

e [Jor__getitem_ ,_ setitem_ and_ delitem_

Configuration

fields

This is a table the known config fields on the system:

name type description default

debug boo] Flag to enable/disable debugging False

exam- str | Directory containing the fastr $systemdir/examples
plesdir examples

execu- str | The default execution plugin to use | ‘ProcessPoolExecution’

tion_plugin

execu- str | Execution script location $systemdir/execution/executionscript.py

tion-

script

logdir str | Directory where the fastr logs will | $userdir/logs
be placed

logtype | str | Type of logging to use ‘default’

mounts | dict| A dictionary containing all mount {‘tmp’: ‘$TMPDIR’, ‘home’: ‘~/’, ‘example_data’:
points in the VFS system ‘$systemdir/examples/data’ }

net- list | Directories to scan for networks [’ $userdir/networks’, ‘$resourcedir/networks’]

works_path

plug- list | Directories to scan for plugins [*$userdir/plugins’, ‘$resourcedir/plugins’]

ins_path

pre- list | A list indicating the order of the [

ferred_types

preferred types to use. First item is
most preferred.

pro- list
tected_modules

A list of modules in the
environmnet modules that are
protected against unloading

re- str | Directory containing the fastr $systemdir/resources
sources- system resources

dir

schemadir str | Directory containing the fastr data | $systemdir/schemas

schemas

Sys- str

temdir

Fastr installation directory

‘/home/docs/checkouts/readthedocs.org/user_builds/fast;
packages/fastr-1.1.2-py2.7.egg/fastr’

r/envs/1.1.2/1ocal/]

tools_path list

Directories to scan for tools

[’ $userdir/tools’, ‘$resourcedir/tools’]

types_path list

Directories to scan for datatypes

[*Suserdir/datatypes’, ‘$resourcedir/datatypes’]

userdir | str | Fastr user configuration directory ~/ fastr
warn_developol Warning users on import if this is True
not a production version of fastr
web_hostnatme| The hostname to expose the web ‘localhost’
app for
web_port| str | The port to expose the web app on | ‘5000
web_secretsfrey The secret key to use for the flask ‘VERYSECRETKEY!”

web app

1.5. Resource File Formats

25

FASTR Documentation, Release 1.1.2

Tool description

Tools are the building blocks in the fastr network. To add new Tools to fastr, XML/json files containing a
Tool definition can be added. These files have the following layout:

Attribute Description
id The id of this Tool (used internally in fastr)
name The name of the Tool, for human readability
version The version of the Tool wrapper (not the binary)
url The url of the Tool wrapper
List of authors of the Tools wrapper
authors[] name Nam.e of the author
email Email address of the author
url URL of the website of the author
tags tagl] List of tags describing the Tool
Description of the underlying command
version Version of the tool that is wrapped
url Website where the tools that is wrapped can be obtained
Description of the target binaries/script of this Tool
os OS targetted (windows, linux, macos or * (for any)
arch Architecture targetted 32, 64 or * (for any)
targets[] | module Environment module giving access to the Tool
location If the module is not found, try using this location to find the Tool
command , , - -
interpreter | Interpreter to use to call the bin with (e.g. bash, python, Rscript)
bin Name of the Tool binary (e.g. toolname, toolname.exe, toolname.py
description Description of the Tool
license License of the Tool, either full license or a clear name (e.g. LGPL, GPL v2)
List of authors of the Tool (not the wrapper!)
authors[] name NamF: of the authors
email Email address of the author
url URL of the website of the author
List of Inputs that can are accepted by the Tool
id ID of the Input
name Longer name of the Input (more human readable)
datatype The ID of the DataType of the Input!
enum]|] List of possible values for an EnumType (created on the fly by fastr)!
prefix Commandline prefix of the Input (e.g. —in, -i)
inputs|[] cardinality Cardinality of the Input
repeat_prefix Flag indicating if for every value of the Input the prefix is repeated
required Flag indicating if the input is required
nospace Flag indicating if there is no space between prefix and value (e.g. —in=val)
format For DataTypes that have multiple representations, indicate which one to use
default Default value for the Input
description Long description for an input
List of Outputs that are generated by the Tool (and accessible to fastr)
id ID of the Output
name Longer name of the Output (more human readable)
datatype The ID of the DataType of the Output!
enum|] List of possible values for an EnumType (created on the fly by fastr)!
prefix Commandline prefix of the Output (e.g. —out, -0)
cardinality Cardinality of the Output
repeat_prefix Flag indicating if for every value of the Output the prefix is repeated
outputs|] - —— ; . :
required Flag indicating if the input is required
nospace Flag indicating if there is no space between prefix and value (e.g. —out=val)
format For DataTypes that have multiple representations, indicate which one to use
description Long description for an input
action Special action (defined per DataType) that needs to be performed before crea
26 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

Table 1.1 — continued from previous page

Attribute Description
automatic Indicate that output doesn’t require commandline argument, but is created au
method Method to acquire output value from the Tool can be ‘path’ or ‘stdout’?
location Definition where to an automatically, usage depends on the met hod?

help Help text explaining the use of the Tool

cite Bibtext of the Citation(s) to reference when using this Tool for a publication

Resource Reference

In this chapter we describe the different plugins bundled with Fastr (e.g. IOPlugins, ExecutionPlugins). The
reference is build automatically from code, so after installing a new plugin the documentation has to be rebuild
for it to be included in the docs.

CollectorPlugin Reference

CollectorPlugins are used for finding and collecting the output data of outputs part of a
FastrInterface

scheme CollectorPlugin
JsonCollector JsonCollector
PathCollector PathCollector
StdoutCollector | StdoutCollector

JsonCollector
The JsonCollector plugin allows a program to print out the result in a pre-defined JSON format. It is then used as
values for fastr.
The working is as follows:
1. The location of the output is taken
If the location is None, go to step 5
The substitutions are performed on the location field (see below)

The location is used as a regular expression and matched to the stdout line by line

A I

The matched string (or entire stdout if location is None) is Lloaded as a Json
6. The data is parsed by set_result

The structure of the JSON has to follow the a predefined format. For normal Node s the format is in the form:

[valuel, value2, value3]

where the multiple values represent the cardinality.

For a F1owNodes the format is the form:

{
'sample_idl': [valuel, value2, value3],
'sample_1d2': [value4, valueb5, valueb]

This allows the tool to create multiple output samples in a single run.

! datatype and enum are conflicting entries, if both specified datatype has presedence
2 More details on defining automatica output are given in [TODO]

1.6. Resource Reference 27

https://docs.python.org/2.7/library/re.html#re-syntax
https://docs.python.org/2.7/library/json.html#json.loads

FASTR Documentation, Release 1.1.2

PathCollector
The PathCollector plugin for the FastrInterface. This plugin uses the location fields to find data on the filesystem.
To use this plugin the method of the output has to be set to path
The general working is as follows:
1. The location field is taken from the output
2. The substitutions are performed on the location field (see below)
3. The updated location field will be used as a regular expression filter
4. The filesystem is scanned for all matching files/directory

The special substitutions performed on the location use the Format Specification Mini-Language Format Specifi-
cation Mini-Language. The predefined fields that can be used are:

e inputs, an objet with the input values (use like {inputs.image[0]})
* outputs, an object with the output values (use like {outputs.result[0]})
e special which has two subfields:

— special.cardinality, the index of the current cardinality

— special.extension, is the extension for the output DataType

Example use:

<output ... method="path" location=" /TransformParameters.
— . "/>

Given the output directory . /nodeid/sampleid/result, the second sample in the output and filetype with
a t xt extension, this would be translated into:

<output ... method="path" location="./nodeid/sampleid/result/TransformParameters.l.
—txt>

StdoutCollector
The StdoutCollector can collect data from the stdout stream of a program. It filters the stdout line by line
matching a predefined regular expression.
The general working is as follows:
1. The location field is taken from the output
2. The substitutions are performed on the location field (see below)
3. The updated location field will be used as a regular expression filter
4. The stdout is scanned line by line and the regular expression filter is applied

The special substitutions performed on the location use the Format Specification Mini-Language Format Specifi-
cation Mini-Language. The predefined fields that can be used are:

* inputs, an objet with the input values (use like {inputs.image[0]})
* outputs, an object with the output values (use like {outputs.result[0]})
e special which has two subfields:

— special.cardinality, the index of the current cardinality

— special.extension, is the extension for the output DataType

Note: because the plugin scans line by line, it is impossible to catch multi-line output into a single value

28 Chapter 1. FASTR Documentation

https://docs.python.org/2.7/library/re.html#re-syntax
https://docs.python.org/2.7/library/string.html#formatspec
https://docs.python.org/2.7/library/string.html#formatspec
https://docs.python.org/2.7/library/re.html#re-syntax
https://docs.python.org/2.7/library/re.html#re-syntax
https://docs.python.org/2.7/library/string.html#formatspec
https://docs.python.org/2.7/library/string.html#formatspec

FASTR Documentation, Release 1.1.2

ExecutionPlugin Reference
This class is the base for all Plugins to execute jobs somewhere. There are many methods already in place for
taking care of stuff. Most plugins should only need to redefine a few abstract methods:

e init__ the constructor

* cleanup a clean up function that frees resources, closes connections, etc

* _gueue_ job the method that queues the job for execution

e _cancel_job cancels a previously queued job

* _release_job releases a job that is currently held

* _job_finished extra callback for when a job finishes

Not all of the functions need to actually do anything for a plugin. There are examples of plugins that do not really
need a cleanup, but for safety you need to implement it. Just using a pass for the method could be fine in such
a case.

Warning: When overwriting other function, extreme care must be taken not to break the plugins working.
scheme ExecutionPlugin

BlockingExecution BlockingExecution

DRMAAExecution DRMAAEXxecution

LinearExecution LinearExecution

ProcessPoolExecution | ProcessPoolExecution

RQExecution RQExecution

BlockingExecution
The blocking execution plugin is a special plugin which is meant for debug purposes. It will not queue jobs but

immediately execute them inline, effectively blocking fastr until the Job is finished. It is the simplest execution
plugin and can be used as a template for new plugins or for testing purposes.

DRMAAEXxecution

A DRMAA execution plugin to execute Jobs on a Grid Engine cluster. It uses a configuration option for selecting
the queue to submit to. It uses the python drmaa package.

Note: To use this plugin, make sure the drmaa package is installed and that the execution is started on an SGE
submit host with DRMAA libraries installed.

Note: This plugin is at the moment tailored to SGE, but it should be fairly easy to make different subclasses for
different DRMAA supporting systems.

Configuration fields
name type | description default
drmaa_queue | str The default queue to use for jobs send to the scheduler | ‘week’

LinearExecution

An execution engine that has a background thread that executes the jobs in order. The queue is a simple FIFO
queue and there is one worker thread that operates in the background. This plugin is meant as a fallback when

1.6. Resource Reference 29

FASTR Documentation, Release 1.1.2

other plugins do not function properly. It does not multi-processing so it is safe to use in environments that do no
support that.

ProcessPoolExecution

A local execution plugin that uses multiprocessing to create a pool of worker processes. This allows fastr to
execute jobs in parallel with true concurrency. The number of workers can be specified in the fastr configuration,
but the default amount is the number of cores - 1 with a minimum of 1.

Warning: The ProcessPoolExecution does not check memory requirements of jobs and running many work-
ers might lead to memory starvation and thus an unresponsive system.

Configuration fields
name type | description default
process_pool_worker_number | int Number of workers to use in a process pool | 3

RQEXxecution

A execution plugin based on Redis Queue. Fastr will submit jobs to the redis queue and workers will peel the jobs
from the queue and process them.

This system requires a running redis database and the database url has to be set in the fastr configuration.

Note: This execution plugin required the redis and rq packages to be installed before it can be loaded properly.

Configuration fields

name type | description default
rq_queue | str The redis queue to use ‘default’
rq_host str The url of the redis serving the redis queue | ‘redis://localhost:6379/0°

FlowPlugin Reference

Plugin that can manage an advanced data flow. The plugins override the execution of node. The execution receives
all data of a node in one go, so not split per sample combination, but all data on all inputs in one large payload.
The flow plugin can then re-order the data and create resulting samples as it sees fits. This can be used for all
kinds of specialized data flows, e.g. cross validation.

To create a new FlowPlugin there is only one method that needs to be implemented: execute.

scheme FlowPlugin
CrossValidation | CrossValidation

CrossValidation

Advanced flow plugin that generated a cross-validation data flow. The node need an input with data and an input
number of folds. Based on that the outputs test and train will be supplied with a number of data sets.

IOPIugin Reference

IOPlugins are used for data import and export for the sources and sinks. The main use of the TOPlugins
is during execution (see Execution). The TOP1ugins can be accessed via fastr.ioplugins, but generally

30 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

there should be no need for direct interaction with these objects. The use of is mainly via the URL used to specify
source and sink data.

scheme IO0Plugin

CommaSeperated ValueFile CommaSeperatedValueFile
FileSystem FileSystem

Null Null

Reference Reference

VirtualFileSystem VirtualFileSystem
VirtualFileSystemRegularExpression | VirtualFileSystemRegularExpression
VirtualFileSystem ValueList VirtualFileSystemValueList
XNATStorage XNATStorage

CommaSeperatedValueFile
The CommaSeperatedValueFile an expand-only type of IOPlugin. No URLs can actually be fetched, but it can
expand a single URL into a larger amount of URLSs.

The csv:// URL is a vEs:// URL with a number of query variables available. The URL mount and path
should point to a valid CSV file. The query variable then specify what column(s) of the file should be used.

The following variable can be set in the query:

variable usage

value the column containing the value of interest, can be int for index or string for key

id the column containing the sample id (optional)

header indicates if the first row is considered the header, can be t rue or false (optional)

delimiter the delimiter used in the csv file (optional)

quote the quote character used in the csv file (optional)

reformat a reformatting string so that value = reformat.format (value) (used before
relative_path)

rela- indicates the entries are relative paths (for files), can be t rue or false (optional)

tive_path

The header is by default false if the neither the value and id are set as a string. If either of these are a string,
the header is required to define the column names and it automatically is assumed t rue

The delimiter and quota characters of the file should be detected automatically using the Sniffer, but can be
forced by setting them in the URL.

Example of valid csv URLs:

Use the first column in the file (no header row assumed)
csv://mount/some/dir/file.csv?value=0

Use the images column in the file (first row is assumed header row)
csv://mount/some/dir/file.csv?value=images

Use the segmentations column in the file (first row is assumed header row)
and use the id column as the sample id
csv://mount/some/dir/file.csv?value=segmentations&id=id

Use the first column as the id and the second column as the value
and skip the first row (considered the header)
csv://mount/some/dir/file.csv?value=1l&id=0&header=true

Use the first column and force the delimiter to be a comma
csv://mount/some/dir/file.csv?value=0&delimiter=,

1.6. Resource Reference 31

https://docs.python.org/2.7/library/csv.html#csv.Sniffer

FASTR Documentation, Release 1.1.2

FileSystem

The FileSystem plugin is create to handle file:// type or URLs. This is generally not a good practice, as this
is not portable over between machines. However, for test purposes it might be useful.

The URL scheme is rather simple: file://host/path (see wikipedia for details)

We do not make use of the host part and at the moment only support localhost (just leave the host empty) leading
to file:/// URLs.

Warning: This plugin ignores the hostname in the URL and does only accept driver letters on Windows in
the form c: /

Null

The Null plugin is create to handle null:// type or URLs. These URLs are indicating the sink should not do
anything. The data is not written to anywhere. Besides the scheme, the rest of the URL is ignored.

Reference

The Reference plugin is create to handle ref:// type or URLs. These URLs are to make the sink just write
a simple reference file to the data. The reference file contains the DataType and the value so the result can be
reconstructed. It for files just leaves the data on disk by reference. This plugin is not useful for production, but is
used for testing purposes.

VirtualFileSystem

The virtual file system class. This is an IOPlugin, but also heavily used internally in fastr for working with
directories. The VirtualFileSystem uses the vfs: // url scheme.

A typical virtual filesystem url is formatted as vfs: //mountpoint/relative/dir/from/mount .ext

Where the mountpoint is defined in the Config file. A list of the currently known mountpoints can be found in
the fastr.config object

>>> fastr.config.mounts

{'example_data': '/home/username/fastr-feature-documentation/fastr/fastr/examples/
—~data',

'home': '/home/username/',

'tmp': '/home/username/FastrTemp'}

This shows that a url with the mount home such as vfs://home/tempdir/testfile.txt would be trans-
lated into /home/username/tempdir/testfile.txt.

There are a few default mount points defined by Fastr (that can be changed via the config file).

mountpoint | default location

home the users home directory (expanduser ('~/"))

tmp the fastr temprorary dir, defaults to tempfile.gettempdir ()
example_data | the fastr example data directory, defaults SFASTRDIR/example/data

VirtualFileSystemRegularExpression
The VirtualFileSystemValueList an expand-only type of IOPlugin. No URLs can actually be fetched, but it can
expand a single URL into a larger amount of URLSs.

A visregex:// URLis a vfs URL that can contain regular expressions on every level of the path. The regular
expressions follow the re module definitions.

32 Chapter 1. FASTR Documentation

http://en.wikipedia.org/wiki/File_URI_scheme
https://docs.python.org/2.7/library/os.path.html#os.path.expanduser
https://docs.python.org/2.7/library/re.html#module-re

FASTR Documentation, Release 1.1.2

An example of a valid URLs would be:

visregex://tmp/network_dir/.*/.x/__fastr_result__.pickle.gz
visregex://tmp/network_dir/nodeX/ (?P<id>.x)/__fastr_result__.pickle.gz

The first URL would resultinallthe ___fastr_result__.pickle.gz inthe working directory of a Network.
The second URL would only result in the file for a specific node (nodeX), but by adding the named group id using
(?P<id>.«) the sample id of the data is automatically set to that group (see Regular Expression Syntax under
the special characters for more info on named groups in regular expression).

Concretely if we would have a directory vfs://mount /somedir containing:

image_1/Image.nii
image_2/image.nii
image_3/anotherimage.nii
image_b5/inconsistentnamingftw.nii

we could match these files using vfsregex://mount/somedir/ (?P<id>image_\d+)/.*\.nii
which would result in the following source data after expanding the URL:

{'image_1': 'vfs://mount/somedir/image_1/Image.nii’',

'image_2': 'vfs://mount/somedir/image_2/image.nii’,
'image_3': 'vfs://mount/somedir/image_3/anotherimage.nii’',
'image_5': 'vfs://mount/somedir/image_5/inconsistentnamingftw.nii'}

Showing the power of this regular expression filtering. Also it shows how the ID group from the URL can be used
to have sensible sample ids.

Warning: due to the nature of regexp on multiple levels, this method can be slow when having many matches
on the lower level of the path (because the tree of potential matches grows) or when directories that are parts
of the path are very large.

VirtualFileSystemValueList

The VirtualFileSystemValueList an expand-only type of IOPlugin. No URLs can actually be fetched, but it can
expand a single URL into a larger amount of URLs. A vfslist:// URL basically is a url that points to a file
using vfs. This file then contains a number lines each containing another URL.

If the contents of a file vfs://mount /some/path/contents would be:

vfs://mount/some/path/filel.txt
vfs://mount/some/path/file2.txt
vfs://mount/some/path/file3.txt
vfs://mount/some/path/filed.txt

Then using the URL vfslist://mount/some/path/contents as source data would result in the four
files being pulled.

Note: The URLs in a vfslist file do not have to use the vfs scheme, but can use any scheme known to the Fastr
system.

XNATStorage

Warning: As this IOPlugin is under development, it has not been thoroughly tested.

1.6. Resource Reference 33

https://docs.python.org/2.7/library/re.html#re-syntax

FASTR Documentation, Release 1.1.2

The XNATStorage plugin is an IOPlugin that can download data from and upload data to an XNAT server. It uses
its own xnat : // URL scheme. This is a scheme specific for this plugin and though it looks somewhat like the
XNAT rest interface, a different type or URL.

Data resources can be access directly by a data url:

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/
—experiments/experiment001/scans/T1l/resources/DICOM

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/
—experiments/+_BRAIN/scans/Tl/resources/DICOM

In the second URL you can see a wildcard being used. This is possible at long as it resolves to exactly one item.

The id query element will change the field from the default experiment to subject and the 1abel query element
sets the use of the label as the fastr id (instead of the XNAT id) to True (the default is False)

To disable https transport and use http instead the query string can be modified to add insecure=true.
This will make the plugin send requests over http:

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/
—experiments/+_BRAIN/scans/Tl/resources/DICOM?insecure=true

For sinks it is import to know where to save the data. Sometimes you want to save data in a new assessor/resource
and it needs to be created. To allow the Fastr sink to create an object in XNAT, you have to supply the type as a
query parameter:

xnat://xnat.bmia.nl/data/archive/projects/sandbox/subjects/S01/experiments/_BRAIN/
—sassessors/test_assessor/resources/IMAGE/files/image.nii.gz?resource_
—type=xnat:resourceCatalog&assessor_type=xnat:qcAssessmentData

Valid options are: subject_type, experiment_type, assessor_type, scan_type, and resource_type.

If you want to do a search where multiple resources are returned, it is possible to use a search url:

xnat://xnat.example.com/search?projects=sandbox&subjects=subject [0-9] [0-9] [0-9]&
—experiments=x_BRAIN&scans=Tl&resources=DICOM

This will return all DICOMs for the T1 scans for experiments that end with _BRAIN that belong to a subjec-
tXXX where XXX is a 3 digit number. By default the ID for the samples will be the experiment XNAT ID (e.g.
XNAT_EO00123). The wildcards that can be the used are the same UNIX shell-style wildcards as provided by the
module fnmatch.

It is possible to change the id to a different fields id or label. Valid fields are project, subject, experiment, scan,
and resource:

xnat://xnat.example.com/search?projects=sandbox&subjects=subject [0-9] [0-9] [0-9]&
—experiments=*_BRAIN&scans=Tl&resources=DICOM&id=subject&label=true

The following variables can be set in the search query:

variable default usage

projects * The project(s) to select, can contain wildcards (see fnmatch)

subjects * The subject(s) to select, can contain wildcards (see fnmatch)

experi- * The experiment(s) to select, can contain wildcards (see fnmatch)

ments

scans * The scan(s) to select, can contain wildcards (see fnmatch)

resources * The resource(s) to select, can contain wildcards (see fnmatch)

id experiment | What field to use a the id, can be: project, subject, experiment, scan, or
resource

label false Indicate the XNAT label should be used as fastr id, options t rue or false

insecure false Change the url scheme to be used to http instead of https

regex false Change search to use regex re.match () instead of fnmatch for matching

34 Chapter 1. FASTR Documentation

https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/re.html#re.match

FASTR Documentation, Release 1.1.2

For storing credentials the . net rc file can be used. This is a common way to store credentials on UNIX systems.
It is required that the file is only accessible by the owner only or a NetrcParseError will be raised. A netrc
file is really easy to create, as its entries look like:

machine xnat.example.com
login username
password secretl23

See the net rc module or the GNU inet utils website for more information about the . net rc file.

Note: On windows the location of the netrc file is assumed to be os.path.expanduser ('~/_netrc').
The leading underscore is because windows does not like filename starting with a dot.

Note: For scan the label will be the scan type (this is initially the same as the series description, but can be
updated manually or the XNAT scan type cleanup).

Warning: labels in XNAT are not guaranteed to be unique, so be careful when using them as the sample ID.

For background on XNAT, see the XNAT API DIRECTORY for the REST API of XNAT.

Interface Reference

Abstract base class of all Interfaces. Defines the minimal requirements for all Interface implementations.

scheme Interface
FastrInterface Fastrinterface
FlowInterface FlowlInterface
Nipypelnterface | Nipypelnterface

Fastrinterface

The default Interface for fastr. For the command-line Tools as used by fastr.

FlowInterface

The Interface use for AdvancedFlowNodes to create the advanced data flows that are not implemented in the fastr.
This allows nodes to implement new data flows using the plugin system.

The definition of FlowInterfaces are very similar to the default FastrInterfaces.

Note: A flow interface should be using a specific FlowPlugin

Nipypelnterface

Experimental interfaces to using nipype interfaces directly in fastr tools, only using a simple reference.

To create a tool using a nipype interface just create an interface with the correct type and set the nipype argument
to the correct class. For example in an xml tool this would become:

1.6. Resource Reference 35

https://docs.python.org/2.7/library/netrc.html#module-netrc
http://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html#The-_002enetrc-file
https://wiki.xnat.org/display/XNAT16/XNAT+REST+API+Directory

FASTR Documentation, Release 1.1.2

<interface class="Nipypelnterface">
<nipype_class>nipype.interfaces.elastix.Registration</nipype_class>
</interface>

Note: To use these interfaces nipype should be installed on the system.

Warning: This interface plugin is basically functional, but highly experimental!

Development and Desigh Documentation

In this chapter we will discuss the design of Fastr in more detail. We give pointers for development and add the
design documents as we currently envision Fastr. This is both for people who are interested in the Fastr develop
and for current developers to have an archive of the design decision agreed upon.

Sample flow in Fastr

The current Sample flow is the following:

36 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

Link

Node

ContainsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

ForwardsSamples

selects cardinality

collapse + expand (changes cardinality and dimensions)

direct forward

broadcast matching (combine samples in cardinality)

broadcast matching (combine samples in payload)

combines payloads (plugin based, e.g. cross product)

The idea is that we make a common interface for all classes that are related to the flow of Samples. For this
we propose the following mixin classes that provide the interface and allow for better code sharing. The basic
structure of the classes is given in the following diagram:

1.7. Development and Design Documentation

37

FASTR Documentation, Release 1.1.2

HasDimensions

dimensions

+ size
+ dimnames

HasSamples

__getitem__()

+ _ contains__
+ _iter__

+ iteritems()
+ items()

+ indexes

+ ids

ContainsSamples

samples

+ _getitem__()
+ _setitem_ ()
+ dimensions

ForwardsSamples

source

index to_target
index to_source
combine_samples
combine_dimensions

+ _ getitem__
+ dimensions

The abstract and mixin methods are as follows:

38

Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

ABC Inherits from Abstract Methods Mixin methods
HasDimensions
dimensions size
dimnames
HasSamples HasDimensions
__getitem_ __contains___
__iter_
iteritems
items
indexes
ids
ContainsSamples HasSamples
samples __getitem_
__setitem_
dimensions
ForwardsSamples HasSamples
source __getitem
index_to_target dimensions
index_to_source
combine_samples
combine_dimensions

Note: Though the flow is currently working like this, the mixins are not yet created.

Network Execution

The network execution should contain a number of steps:

* Network
— Creates a NetworkRun based on the current layout

* NetworkRun
— Transform the Network (possibly joining Nodes of certain interface into a combined Node etc)
— Start generation of the Job Direct Acyclic Graph (DAG)

* SchedulingPlugin
— Prioritize Jobs based on some predefined rules
— Combine certain Jobs to improve efficiency (e.g. minimize i/o on a grid)

* ExecutionPlugin

— Run a (list of) Jobs. If there is more than one jobs, run them sequentially on same execution host
using a local temp for intermediate files.

— On finished callback: Updated DAG with newly ready jobs, or remove cancelled jobs

This could be visualized as the following loop:

1.7. Development and Design Documentation 39

FASTR Documentation, Release 1.1.2

Network

reates

NetworkRun

executes

NodeRun creates

dds jobs

JobDAG callback

analyzes and selects jobs

SchedulingPlugin

(list of) Jobs to execute

ExecutionPlugin

The callback of the ExecutionPlugin to the NetworkRun would trigger the execution of the relevant
NodeRuns and the addition of more Jobs to the JobDAG.

Note: The Job DAG should be thread-safe as it could be both read and extended at the same time.

Note: If alist of jobs is send to the ExecutionPlugin to be run as on Job on an external execution platform,
the resources should be combined as follows: memory=max, cores=max, runtime=sum

40 Chapter 1. FASTR Documentation

FASTR Documentation, Release 1.1.2

Note: If there are execution hosts that have mutliple cores the ExecutionPlugin should manage this (for
example by using pilot jobs). The SchedulingPlugin creates units that should be run sequentially on the
resources noted and will not attempt parallelization

A NetworkRun would be contain similar information as the Network but not have functionality for edit-
ting/changing it. It would contain the functionality to execute the Network and track the status and samples. This
would allow Network.execute to create multiple concurent runs that operate indepent of each other. Also
editting a Network after the run started would have no effect on that run.

Note: This is a plan, not yet implemented

Note: For this to work, it would be important for a Jobs to have forward and backward dependency links.

SchedulingPlugins

The idea of the plugin is that it would give a priority on Jobs created by a Network. This could be done based
on different strategies:

* Based on (sorted) sample id’s, so that one sample is always prioritized over others. The idea is that samples
are process as much as possible in order, finishing the first sample first. Only processing other samples if
there is left-over capacity.

* Based on distance to a (particular) Sink. This is to generate specific results as quick as possible. It would
not focus on specific samples, but give priority to whatever sample is closest to being finished.

* Based on the distance to from a Souce. Based on the sign of the weight it would either keep all samples
on the same stage as much as possible, only progressing to a new Node when all samples are done with the
previous Node, or it would push samples with accelerated rates.

Additionally it will group Jobs to be executed on a single host. This could reduce i/o and limited the number of
jobs an external scheduler has to track.

Note: The interface for such a plugin has not yet been established.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning

1.1.2 - 2016-12-22
Fixed

* The example network in resources/networks/add_ints.json was using an old serialization format making it
non-functions. Replaced by a new network file.

1.8. Changelog 41

http://keepachangelog.com/
http://semver.org/

FASTR Documentation, Release 1.1.2

1.1.1 - 2016-12-22

Fixed

* Network runs called from an interpreter (and not file) caused a crash because the network tried to report the
file used. Better handling of these situations.

1.1.0 - 2016-12-08

Added

* Namespaces for resources (tools and networks)

* Network manager located at fastr.networklist

* RQExecution plugin. This plugin uses python-rq to manage a job queue.

* LinearExecution plugin. This plugin uses a background thread for execution.
* BlockingExecution plugin. This plugin executes jobs in a blocking fashion.

* Automatic generation of documentation for all plugins, the configuration fields and all commandline tools.

Changed

* Provenance is updated with a network dump and used tool definitions.
* New configuration system that uses python files

* New plugin system that integrates with the new configuration system and enables automatic importing of
plugins

* The fastr command line tools now use an entrypoint which is located in fastr.utils.cmd. This code
also dispatches the sub commands.

Removed

* fastr.config file. This is replaced by the config.py file. Go to the docs!

Fixed

* Adds explicit tool namespace and version to the provenance document.

42 Chapter 1. FASTR Documentation

CHAPTER 2

FASTR User reference

Fastr User Reference

fastr.toollist
A ToolManager containing all versions of all Tools loaded into the FASTR environment. The ToolManager
can be indexed using the Tool id string or a tool id string and a version. For example if you have two versions
(4.5 and 4.8) of a tool called Elastix:

>>> fastr.toollist['elastix.Elastix']
Tool Elastix v4.8 (Elastix Registration)

Inputs o
—Outputs
fixed_image (ITKImageFile) | directory,,
— (Directory)
moving_image (ITKImageFile) | transform
— (ElastixTransformFile)
parameters (ElastixParameterFile) | log_file |
— (ElastixLogFile)
fixed_mask ITKImageFile)
moving_mask ITKImageFile)

(|
(|
initial_transform (ElastixTransformFile)
priority (__Elastix_4.8_interface__priority__ Enum__)
threads (Int)

>>> fastr.toollist['elastix.Elastix', '4.5"]

Tool Elastix v4.5 (Elastix Registration)

Inputs o
—Outputs
fixed_image (ITKImageFile) | directory,,
— (Directory)
moving_image (ITKImageFile) | transform
< (ElastixTransformFile)
parameters (ElastixParameterFile) | log_file |
— (ElastixLogFile)
fixed_mask (ITKImageFile)

43

FASTR Documentation, Release 1.1.2

moving_mask (ITKImageFile) |
initial_transform (ElastixTransformFile) |
priority (__Elastix_4.5_interface__priority__ Enum__) |
threads (Int) |

fastr.typelist
A dictionary containing all types loaded into the FASTR environment. The keys are the typenames and the
values are the classes.

class fastr.Network (id_=’unnamed_network’, version=None)
The Network class represents a workflow. This includes all Nodes (including ConstantNodes, SourceNodes
and Sinks) and Links.

add_1link (link)
Add a Link to the Network. Make sure the link is in the link list and the link parent is set to this
Network

Parameters 1ink (Link) - link to add
Raises
* FastrTypeError — if link is incorrectly typed
* FastrNetworkMismatchError —if the link already belongs to another Network

add_node (node)
Add a Node to the Network. Make sure the node is in the node list and the node parent is set to this
Network

Parameters node (Node) —node to add
Raises FastrTypeError —if node is incorrectly typed

create_link (source, target, id_=None, collapse=None, expand=None)
Create a link between two Nodes and add it to the current Network.

Parameters
* source (BaseOutput) — the output that is the source of the link
* target (BaseInput) — the input that is the target of the link
e id (str) - the id of the link

Returns the created link

Type Link
create_node (f00l, id_=None, stepid=None, cores=None, memory=None, walltime=None, node-
group=None)

Create a Node in this Network. The Node will be automatically added to the Network.
Parameters
* tool (Tool) - The Tool to base the Node on
e id (st r) - The id of the node to be created
* stepid (str)— The stepid to add the created node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

Returns the newly created node
Return type Node

create_sink (datatype, id_=None, stepid=None)
Create a SinkNode in this Network. The Node will be automatically added to the Network.

Parameters

44 Chapter 2. FASTR User reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

* datatype (BaseDataType) — The DataType of the sink node
e id (st r) - The id of the sink node to be created
* stepid (str) - The stepid to add the created sink node to
Returns the newly created sink node
Return type SinkNode

create_source (datatype, id_=None, stepid=None, nodegroup=None, sourcegroup=None)
Create a SourceNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (BRaseDataType) — The DataType of the source source_node
e id (st r) - The id of the source source_node to be created
* stepid (str) - The stepid to add the created source source_node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

* sourcegroup (str) — DEPRECATED! The nodegroup this SourceNode will be
added to

Returns the newly created source source_node
Return type SourceNode

draw_network (name="network_layout’, img_format="svg’, draw_dimension=False)
Output a dot file and try to convert it to an image file.

Parameters img_format (st r) — extension of the image format to convert to
Returns path of the image created or None if failed
Return type str or None

class fastr.Link (source, target, parent=None, id_=None, collapse=None, expand=None)
Class for linking outputs (BaseOutput) to inputs (BaseInput)

Examples:

>>> import fastr
>>> network = fastr.Network ()
>>> 1linkl = network.create_link(nl.ouputs['outl'], n2.inputs['in2"'])

link2 = Link ()
link2.source = nl.ouputs['outl']
link2.target n2.inputs['in2']

source
The source BaseOutput of the Link. Setting the source will automatically register the Link with the
source BaseOutput. Updating source will also make sure the Link is unregistered with the previous
source.

Raises FastrTypeError —if assigning a non BaseOutput

target
The target BaseInput of the Link. Setting the target will automatically register the Link with the
target Baselnput. Updating target will also make sure the Link is unregistered with the previous target.

Raises FastrTypeError —if assigning a non BaseInput

class fastr.Node (tool, id_=None, parent=None, cores=None, memory=None, walltime=None)
The class encapsulating a node in the network. The node is responsible for setting and checking inputs and
outputs based on the description provided by a tool instance.

2.1. Fastr User Reference 45

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

FASTR Documentation, Release 1.1.2

id_ = None
The Node id s a unique string identifying the Node

inputgroups

A list of inputgroups for this Node. An input group is InputGroup object filled according to the
Node

inputs = None
A list of inputs of this Node

name
Name of the Tool the Node was based on. In case a Toolless Node was used the class name is given.

outputs = None
A list of outputs of this Node

class fastr.ConstantNode (datatype, data, id_=None)

Class encapsulating one output for which a value can be set. For example used to set a scalar value to the
input of a node.

name
Name of the Tool the Node was based on. In case a Toolless Node was used the class name is given.

class fastr.SourceNode (datatype, id_=None)

Class providing a connection to data resources. This can be any kind of file, stream, database, etc from
which data can be received.

name
Name of the Tool the Node was based on. In case a Toolless Node was used the class name is given.

class fastr.SinkNode (datatype, id_=None)

Class which handles where the output goes. This can be any kind of file, e.g. image files, textfiles, config
files, etc.

name
Name of the Tool the Node was based on. In case a Toolless Node was used the class name is given.

46

Chapter 2. FASTR User reference

CHAPTER 3

FASTR REST API reference

REST API

Fastr includes a webapp and a REST API. This section contains a listing of all REST paths. The full documentation
is available via swagger with the paths /swagger.json for the schema or /api/doc/ for the swagger UL

Quick reference

Resource | Operation Description
GET/

GET /api/doc/

GET /api/networks

GET /api/networks/(id)

POST /api/runs

GET /api/runs

DELETE /api/runs/(id)

GET /api/runs/(id)

GET /api/runs/(id)/status

GET /api/tools

GET /api/tools/(id)

GET /api/tools/(id)/(version)
GET /doc

GET /index

GET/

GET /network/(name)

GET /networks

GET /prov

GET /shutdown

GET /static/(path:filename)

GET /swagger.json

GET /swaggerui/(path:filename)
GET /tool/(toolname)/(version)
GET /tool/(toolname)

GET /tool

GET /websocketclient

47

FASTR Documentation, Release 1.1.2

GET /api/networks
Get a list of the networks

GET /api/tools
Get a list of all Tools known to the server

POST /api/runs
Create a new Network run and start execution

GET /api/runs
Get a list of all Network runs on the server

GET /api/doc/
Override this method to customize the documentation page

GET /swagger. json
Render the Swagger specifications as JSON

GET /api/tools/ (id)/
version Get a Tool json description from the server

GET /api/runs/ (id) /status
Get the status of a Network Run on the server

GET /api/networks/ (id)
Get a Network json description from the server

GET /api/tools/ (id)
Get a Tool json description from the server

DELETE /api/runs/ (id)
Abort a Network run and stop all associated execution

GET /api/runs/ (id)
Get information about a Network run

GET /swaggerui/ (path: filename)
Function used internally to send static files from the static folder to the browser.

New in version 0.5.

GET /static/ (path: filename)
Function used internally to send static files from the static folder to the browser.

New in version 0.5.

48 Chapter 3. FASTR REST API reference

cHAPTER 4

FASTR Developer Module reference

fastr Package

fastr Package

FASTR is a top level package which includes all parts required to create networks and edit networks.

class fastr.__init__ .Network
The class representing a Network, this is in fact a reference to fastr.core.network.Network.

class fastr.__init__ .Node
The class representing a Node, this is in fact a reference to fastr.core.node. Node.

class fastr.__init_ .Link
The class representing a Link, this is in fact a reference to fastr.core. link.Link.

class fastr.__init__ .SourceNode
The class representing a data source, this is in fact a reference to fastr.core.node. SourceNode.

class fastr. init__ .SinkNode
The class representing a data sink, this is in fact a reference to fastr.core.node. SinkNode.

class fastr.__init__ .ConstantNode
The class representing a constant data source, this is in fact a reference to fastr.core.node.
ConstantNode.

fastr.__init__ .toollist
A fastr.core.toolmanager.ToolManager containing all Tools known to the FASTR environ-
ment. The toollist can be accessed in a similar way to a dict. Indexing with a tool id will return the newest
version of the Tool. If a specific version of the tool is required a tuple can be used as the index:

>>> import fastr

>>> fastr.toollist['testtool']

<Tool: testtool version: 4.2>

>>> fastr.toollist['testtool', '2.0"']
<Tool: testtool version: 2.0>

fastr.__init__ .typelist
A fastr.core.datatypemanager.DataTypeManager containing all Types known to the

49

FASTR Documentation, Release 1.1.2

FASTR environment. This is usuable as a dict where the key is the datatype id and the value is the datatype
itself.

class fastr._ init_ .Network (id_=’unnamed_network’, version=None)
Bases: fastr.core.serializable.Serializable

The Network class represents a workflow. This includes all Nodes (including ConstantNodes, SourceNodes
and Sinks) and Links.

NETWORK_DUMP_FILE_NAME = ‘__ fastr_network__.json’
SOURCE_DUMP_FILE NAME = ‘__ source_data__.pickle.gz’
__dataschemafile___ = ‘Network.schema.json’

__eq__ (other)
Compare two Networks and see if they are equal.

Parameters other (Network) —
Returns flag indicating that the Networks are the same
Return type bool

__getitem__ (item)
Get an item by its fullid. The fullid can point to a link, node, input, output or even subinput/suboutput.

Parameters item (str, unicode) — fullid of the item to retrieve
Returns the requested item

__getstate__ ()
Retrieve the state of the Network

Returns the state of the object
Rtype dict

__init_ (id_=’unnamed_network’, version=None)
Create a new, empty Network

Parameters name (st r)—name of the Network

Returns newly created Network

Raises OSError —if the tmp mount in the config is not a writable directory
__module__ = ‘fastr.core.network’

__ne__ (other)
Tests for non-equality, this is the negated version __eq__

__repr__ ()

_ _setstate__ (state)
Set the state of the Network by the given state. This completely overwrites the old state!

Parameters state (dict)— The state to populate the object with
Returns None
abort ()

add_1link (link)
Add a Link to the Network. Make sure the link is in the link list and the link parent is set to this
Network

Parameters 1link (I.ink) - link to add
Raises
* FastrTypeError —if link is incorrectly typed

* FastrNetworkMismatchError — if the link already belongs to another Network

50 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#unicode
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

add_node (node)
Add a Node to the Network. Make sure the node is in the node list and the node parent is set to this
Network

Parameters node (Node) —node to add
Raises FastrTypeError —if node is incorrectly typed

add_stepid (stepid, node)
Add a Node to a specific step id

Parameters
* stepid (str) — the stepid that the node will be added to
* node (Node) — the node to add to the stepid

check_id (id_)
Check if an id for an object is valid and unused in the Network. The method will always returns True
if it does not raise an exception.

Parameters id (st r) - the id to check

Returns True

Raises
* FastrValueError — if the id is not correctly formatted
* FastrValueError —if the id is already in use

create_constant (datatype, data, id_=None, stepid=None, nodegroup=None, source-
group=None)
Create a ConstantNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (BRaseDataType)— The DataType of the constant node

e data (datatype or list of datatype)— The data to hold in the constant
node

e id (st r) - The id of the constant node to be created
* stepid (str) - The stepid to add the created constant node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

Returns the newly created constant node
Return type ConstantNode

create_link (source, target, id_=None, collapse=None, expand=None)
Create a link between two Nodes and add it to the current Network.

Parameters
* source (BaseOutput) — the output that is the source of the link
* target (BaseInput) — the input that is the target of the link
e id (str)—theid of the link
Returns the created link
Type Link
create_macro (network, id_=None)

create_node (t00l, id_=None, stepid=None, cores=None, memory=None, walltime=None, node-
group=None)
Create a Node in this Network. The Node will be automatically added to the Network.

41.

fastr Package 51

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Parameters
¢ tool (Tool)— The Tool to base the Node on
e id (st r)— The id of the node to be created
* stepid (str)— The stepid to add the created node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

Returns the newly created node
Return type Node
create_reference (source_data, output_directory)

create_sink (datatype, id_=None, stepid=None)
Create a SinkNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (BRaseDataType) — The DataType of the sink node
e id (st r) - The id of the sink node to be created
* stepid (str)— The stepid to add the created sink node to
Returns the newly created sink node
Return type SinkNode

create_source (datatype, id_=None, stepid=None, nodegroup=None, sourcegroup=None)
Create a SourceNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (RaseDataType) — The DataType of the source source_node
e id (st r) - The id of the source source_node to be created
* stepid (str) - The stepid to add the created source source_node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

* sourcegroup (str) — DEPRECATED! The nodegroup this SourceNode will be
added to

Returns the newly created source source_node
Return type SourceNode

draw_network (name="network_layout’, img_format="svg’, draw_dimension=False)
Output a dot file and try to convert it to an image file.

Parameters img_format (st r) — extension of the image format to convert to
Returns path of the image created or None if failed
Return type str or None

execute (sourcedata, sinkdata, execution_plugin=None, tmpdir=None, cluster_queue=None)
Execute the Network with the given data. This will analyze the Network, create jobs and send them to
the execution backend of the system.

Parameters
* sourcedata (dict) — dictionary containing all data for the sources
* sinkdata (dict) — dictionary containing directives for the sinks

* execution_plugin (st r)—the execution plugin to use (None will use the config
value)

52 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Raises
* FastrKeyError —if a source has not corresponding key in sourcedata

* FastrKeyError —if a sink has not corresponding key in sinkdata

fullid
The fullid of the Network

id
The id of the Network. This is a read only property.

is wvalid()

job_finished (job, execution_interface)
Call-back handler for when a job is finished. Will collect the results and handle blocking jobs. This
function is automatically called when the execution plugin finished a job.

Parameters job (Job) — the job that finished

remove (value)
Remove an item from the Network.

Parameters value (Node or Link) — the item to remove

test (reference_data_dir, source_data=None)

Execute the network with the source data specified and test the results against the refence data. This
effectively tests the network execution.

Parameters

* reference _data dir (str)— The path or vfs url of reference data to compare
with

e source_data (dict)— The source data to use

class fastr.___init__ .Link (source, target, parent=None, id_=None, collapse=None, ex-
pand=None)
Bases: fastr.core.updateable.Updateable, fastr.core.serializable.
Serializable

Class for linking outputs (BaseOutput) to inputs (Base Input)

Examples:

>>> import fastr
>>> network = fastr.Network ()
>>> 1linkl = network.create_link(nl.ouputs['outl'], n2.inputs['in2'])

1ink2 = Link ()
link2.source = nl.ouputs['outl']
link2.target = n2.inputs['in2']

__abstractmethods__ = frozenset([])
__dataschemafile___ = ‘Link.schema.json’
__eq__ (other)

Test for equality between two Links
Parameters other (Link) — object to test against
Returns True for equality, False otherwise
Return type bool

__getitem__ (index)
Get a an item for this Link. The item will be retrieved from the connected output, but a diverging or
converging flow can change the number of samples/cardinality.

Parameters index (SampleIndex) —index of the item to retrieve

4.1. fastr Package 53

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

Returns the requested item
Return type SampleItem

Raises FastrIndexError — if the index length does not match the number dimensions
in the source data (after collapsing/expanding)

__getstate__ ()
Retrieve the state of the Link

Returns the state of the object
Rtype dict

__init__ (source, target, parent=None, id_=None, collapse=None, expand=None)
Create a new Link in a Network.

Parameters
* source (BaseOutput) — the source output
* target (BaseInput) — the target input

e parent (Network or None) — the parent network, if None is given the
fastr.current_network is assumed to be the parent

e id(str or None)-the id of the link, if no id_ is given, the id will be in the form
of “link_{:d}”

e collapse (int, str, or tuple of int/str) — the dimensions that the
link has to collapse on

* expand (bool) — Does this link need to expand the cardinality into a new sample
dimension

Returns newly created Link
Raises
* FastrValueError — if parent is not given and fastr.current_network is not set
* FastrValueError — if the source output is not in the same network as the Link
* FastrValueError — if the target input is not in the same network as the Link
__module__ = ‘fastr.core.link’

repr ()
Get a string representation for the Link

Returns the string representation
Return type str

_ _setstate__ (state)
Set the state of the Link by the given state.

Parameters state (dict)— The state to populate the object with
Returns None
Raises FastrValueError — if the parent network and fastr.current_network are not set

cardinality (index=None)
Cardinality for a Link is given by source Output and the collapse/expand settings

Parameters key (SampleIndex) — key for a specific sample (can be only a sample in-
dex!)

Returns the cardinality

Return type int, sympy.Symbol

54 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int

FASTR Documentation, Release 1.1.2

Raises FastrIndexError —if the index length does not match the number of dimension
in the data

collapse
The converging dimensions of this link. Collapsing changes some dimensions of sample lists into
cardinality, reshaping the data.

Collapse can be set to a tuple or an int/str, in which case it will be automatically wrapped in a tuple.
The int will be seen as indices of the dimensions to collapse. The str will be seen as the name of the
dimensions over which to collapse.

Raises FastrTypeError —if assigning a collapse value of a wrong type

collapse_indexes
The converging dimensions of this link as integers. Dimension names are replaces with the corre-
sponding int.

Collapsing changes some dimensions of sample lists into cardinality, reshaping the data

classmethod createobj (state, network=None)
Create object function for Link

Parameters
¢ cls — The class to create
* state — The state to use to create the Link
* network — the parent Network

Returns newly created Link

destroy ()
The destroy function of a link removes all default references to a link. This means the references in
the network, input and output connected to this link. If there is no references in other places in the
code, it will destroy the link (reference count dropping to zero).

This function is called when a source for an input is set to another value and the links becomes dis-
connected. This makes sure there is no dangling links.

dimnames
The dimension names for this Link. The dimension names depend on the connected source output and
the collapse/expand.

expand
Flag indicating that the link will expand the cardininality into a new sample dimension to be created.

fullid
The full defining ID for the Input

iteritems ()
Iterate over all SampleItems available in this Link. This function queries the connected source
output and processes the collapsing and expanding.

Returns generator function yielding SampleItems

parent
The Network to which this Link belongs.

size
The size of the data delivered by the link. This can be different from the source size because the link
can make data collapse or expand.

source
The source BaseOutput of the Link. Setting the source will automatically register the Link with the
source BaseOutput. Updating source will also make sure the Link is unregistered with the previous
source.

Raises FastrTypeError —if assigning a non BaseOutput

41.

fastr Package 55

FASTR Documentation, Release 1.1.2

status

target
The target BaseInput of the Link. Setting the target will automatically register the Link with the
target Baselnput. Updating target will also make sure the Link is unregistered with the previous target.

Raises FastrTypeError —if assigning a non BaseInput

class fastr.__init__ .Node (fool, id_=None, parent=None, cores=None, memory=None, wall-
time=None)
Bases: fastr.core.updateable.Updateable, fastr.core.serializable.
Serializable

The class encapsulating a node in the network. The node is responsible for setting and checking inputs and
outputs based on the description provided by a tool instance.

__abstractmethods__ = frozenset([])
__dataschemafile__ = ‘Node.schema.json’
__eq__ (other)

Compare two Node instances with each other. This function ignores the parent and update status, but
tests rest of the dict for equality. equality

Parameters other (Node) — the other instances to compare to
Returns True if equal, False otherwise

__getstate__ ()
Retrieve the state of the Node

Returns the state of the object
Rtype dict

__init__ (tool, id_=None, parent=None, cores=None, memory=None, walltime=None)
Instantiate a node.

Parameters
¢ tool (Tool) - The tool to base the node on
e id (st r) - the id of the node
e parent (Network) — the parent network of the node
* cores (int)—number of cores required for executing this Node

* memory (st r)—amount of memory required in the form d+[mMgG] where M is for
megabyte and G for gigabyte

e walltime (str) — amount of time required in second or in the form
HOURS:MINUTES:SECOND

Returns the newly created Node

_ _metaclass_
alias of ABCMeta

__module___ = ‘fastr.core.node’

__repr__ ()
Get a string representation for the Node

Returns the string representation
Return type str

__ setstate__ (state)
Set the state of the Node by the given state.

Parameters state (dict)— The state to populate the object with

56 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

Returns None

__str__ ()
Get a string version for the Node

Returns the string version
Return type str

blocking
Indicate that the results of this Node cannot be determined without first executing the Node, causing a
blockage in the creation of jobs. A blocking Nodes causes the Chunk borders.

create_job (sample_id, sample_index, job_data, job_dependencies, jobid=None, out-

puturl=None, **kwargs)
Create a job based on the sample id, job data and job dependencies.

Parameters
* sample_id (SampleId) - the id of the corresponding sample
* job_data (dict) — dictionary containing all input data for the job
* job_dependencies — other jobs that need to finish before this job can run
Returns the created job
Return type Job
classmethod createobj (state, network=None)

dimnames
Names of the dimensions in the Node output. These will be reflected in the SampleldList of this Node.

execute ()
Execute the node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs
find_source_index (target_index, target, source)

fullid
The full defining ID for the Node

get_sourced_nodes ()
A list of all Nodes connected as sources to this Node

Returns list of all nodes that are connected to an input of this node
id
The id of the Node
inputgroups

A list of inputgroups for this Node. An input group is InputGroup object filled according to the
Node

listeners
All the listeners requesting output of this node, this means the listeners of all Outputs and SubOutputs

merge_dimensions

name
Name of the Tool the Node was based on. In case a Toolless Node was used the class name is given.

nodegroup

outputsize
Size of the outputs in this Node

41.

fastr Package 57

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

parent
The parent network of this node.

prepare ()
Prepare the node for execution. It will create a SampleldList of the correct size and prepare the outputs.

required_cores
Number of cores required for the execution of this Node

required_memory
Amount of memory required for the execution of this Node. Follows the format d+[mMgG] so 500M
or 4g would be valid ways to specify 500 megabytes or 4 gigabyte of memory.

required_time
Amount of time required for the execution of this Node. Follows the format of a number of second or
H:M:S, with H the number of hours, M the number of minutes and S the number of seconds.

set_result (job)
Incorporate result of a job into the Node.

Parameters job (Type) — job of which the result to store
status
tool

update_inputgroups ()
Update all input groups in this node

class fastr.__init__ .ConstantNode (datatype, data, id_=None)
Bases: fastr.core.node.SourceNode

Class encapsulating one output for which a value can be set. For example used to set a scalar value to the
input of a node.

__abstractmethods__ =frozenset([])
__dataschemafile__ = ‘ConstantNode.schema.json’
__getstate__ ()

Retrieve the state of the ConstantNode
Returns the state of the object
Rtype dict

__init__ (datatype, data, id_=None)
Instantiation of the ConstantNode.

Parameters
* datatype — The datatype of the output.
* data - the prefilled data to use.
e id - The url pattern.

This class should never be instantiated directly (unless you know what you are doing). Instead create
a constant using the network class like shown in the usage example below.

usage example:

>>> import fastr

>>> network = fastr.Network ()
>>> source = network.create_source (datatype=fastr.typelist['ITKImageFile'],
— 1d_="'sourceN"')

or alternatively create a constant node by assigning data to an item in an InputDict:

58 Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

>>> node_a.inputs['in'] = ['some', 'data']

which automatically creates and links a ConstantNode to the specified Input
_ _module___ = ‘fastr.core.node’

__setstate__ (state)
Set the state of the ConstantNode by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

data
The data stored in this constant node

execute ()
Execute the constant node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs

set_data (data=None, ids=None)
Set the data of this constant node in the correct way. This is mainly for compatibility with the parent
class SourceNode

Parameters
e data(dict or list of urls)- the datato use
» ids —if data is a list, a list of accompanying ids

class fastr.__init__ .SourceNode (datatype, id_=None)
Bases: fastr.core.node.FlowNode

Class providing a connection to data resources. This can be any kind of file, stream, database, etc from
which data can be received.

__ abstractmethods__ = frozenset([])
__dataschemafile___ = ‘SourceNode.schema.json’
__eq__ (other)

Compare two Node instances with each other. This function ignores the parent and update status, but
tests rest of the dict for equality. equality

Parameters other (Node) — the other instances to compare to
Returns True if equal, False otherwise

__getstate__ ()
Retrieve the state of the SourceNode

Returns the state of the object
Rtype dict

__init__ (datatype, id_=None)
Instantiation of the SourceNode.

Parameters
* datatype — The (id of) the datatype of the output.
e id - The url pattern.

This class should never be instantiated directly (unless you know what you are doing). Instead create
a source using the network class like shown in the usage example below.

usage example:

4.1. fastr Package 59

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

>>> import fastr

>>> network = fastr.Network /()

>>> source = network.create_source (datatype=fastr.typelist['ITKImageFile'],
< 1d_='sourceN"')

_ _module__ = ‘fastr.core.node’

__setstate__ (state)
Set the state of the SourceNode by the given state.

Parameters state (dict)— The state to populate the object with
Returns None
create_job (sample_id, sample_index, job_data, job_dependencies)

datatype
The datatype of the data this source supplies.

dimnames
Names of the dimensions in the SourceNode output. These will be reflected in the SampleldLists.

execute ()
Execute the source node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs

output
Shorthand for self.outputs['output']

outputsize
The size of output of this SourceNode

set_data (data, ids=None)
Set the data of this source node.

Parameters
e data(dict, OrderedDict or 1list of urls)-—the datato use
e ids —if data is a list, a list of accompanying ids
sourcegroup

valid
This does nothing. It only overloads the valid method of Node(). The original is intended to check if
the inputs are connected to some output. Since this class does not implement inputs, it is skipped.

configmanager Module
This module defines the Fastr Config class for managing the configuration of Fastr. The config object is stored
directly in the fastr top-level module.

class fastr.configmanager.Config (*configfiles)
Bases: object

Class contain the fastr configuration

DEFAULT_FIELDS = {‘resourcesdir’: (<type ‘str’>, ‘’home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.]
__dict__ =dict_proxy({‘_update_logging’: <function _update_logging>, ‘_ _module__’: ‘fastr.configmanager’, ‘reg;
__getattr__ (item)

__init__ (*configfiles)

__module___ = ‘fastr.configmanager’

60 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#object

FASTR Documentation, Release 1.1.2

__repr__ ()

__weakref
list of weak references to the object (if defined)

read_config (filename)
Read a configuration and update the configuration object accordingly

Parameters £ilename — the configuration file to read

read_config files = None
Trace of the config files read by this object

register_ fields (fields_spec)
Register extra fields to the configuration manager.

web_url ()
Construct a fqdn from the web[hostname’] and web[port’] settings. :return: FQDN :rtype: str

x = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fastr-1.1.2-p:

class fastr.configmanager.EmptyDefault (data=None)
Bases: object

__add__ (right)

__delitem__ (key)

__dict___ =dict_proxy({‘extend’: <function extend>, ‘__delitem__’: <function __delitem__>, *__module__’: ‘fastr.c
__getitem__ (item)
__dadd__ (right)

__init__ (data=None)
__module___ = ‘fastr.configmanager’
__radd__ (other)

__setitem__ (key, value)

__weakref
list of weak references to the object (if defined)

append (value)
asdict ()
aslist ()
extend (other)
prepend (value)

update (other)

datatypes Module

The datatypes module holds all DataTypes generated by fastr and all the base classes for these datatypes.

class fastr.datatypes.AnalyzeImageFile (value=None, format_=None)
Bases: fastr.datatypes.URLType

__ abstractmethods__ = frozenset([])
__module___ = ‘fastr.datatypes’
classmethod content (invalue, outvalue=None)

description = ‘Analyze Image file formate’

4.1. fastr Package 61

https://docs.python.org/2.7/library/functions.html#object

FASTR Documentation, Release 1.1.2

extension = ‘hdr’
filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas

module = <module ‘AnalyzeImageFile’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/loce

class fastr.datatypes.AnyFile (value=None)

Bases: fastr.datatypes. TypeGroup

Special Datatype in fastr that is a TypeGroup with all known DataTypes as its members.
__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘TypeGroup AnyFile\nAnyFile (AnyFile) is a group of consisting of all URLTypes known by fastr, ct

class fastr.datatypes.AnyType (value=None)

Bases: fastr.datatypes. TypeGroup

Special Datatype in fastr that is a TypeGroup with all known DataTypes as its members.
__ abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘TypeGroup AnyType\nAnyType (AnyType) is a group of consisting of all DataTypes known by fast

class fastr.datatypes.BaseDataType (value=None, format_=None)

Bases: fastr.core.baseplugin.BasePlugin
The base class for all datatypes in the fastr type system.
__abstractmethods__ =frozenset([’__init__’])

__eq__ (other)
Test the equality of two DataType objects

Parameters other (DataType) — the object to compare against
Returns flag indicating equality
Return type bool

__getstate__ ()

__init__ (value=None, format_=None)
The BaseDataType constructor.

Parameters
* value - value to assign to the new BaseDataType object
* format — the format used for the ValueType
Returns new BaseDataType object
Raises
e FastrDataTypeNotInstantiableError — if not subclassed
e FastrNotImplementedError —if id, name, version or description is None
__module___ = ‘fastr.datatypes’

__ne__ (other)
Test if two objects are not equal. This is by default done by negating the __eq__ operator

Parameters other (DataType) — the object to compare against
Returns flag indicating equality

Return type bool

62

Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

__repr_ ()
Returns string representation of the BaseDataType

Returns string represenation
Return type str
__setstate__ (state)

__str__ ()
Returns the string version of the BaseDataType

Returns string version
Return type str

checksum ()
Generate a checksum for the value of this DataType

Returns the checksum of the value
Return type str
data_uri
description="*
extension = None
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
fullid = ‘fastr://typelist/BaseDataType’
id = ‘BaseDataType’

classmethod isinstance (value)
Indicate whether value is an instance for this DataType.

Returns the flag indicating the value is of this DataType
Return type bool
name = ‘BaseDataType’
parent = DataTypeManager AnalyzeIlmageFile : <URLType: AnalyzeImageFile> AnyFile : <TypeGroup: AnyFile>

parsed_value
The parsed value of object instantiation of this DataType.

raw_value
The raw value of object instantiation of this DataType. For datatypes that override value (like Deferred)
this is the way to access the _value field.

classmethod test ()
Define the test for the BasePluginManager. Make sure we are not one of the base classes

valid
A boolean flag that indicates weather or not the value assigned to this DataType is valid. This property
is generally overwritten by implementation of specific DataTypes.

value
The value of object instantiation of this DataType.

version = <Version: 1.0>

class fastr.datatypes.Boolean (value=None, format_=None)
Bases: fastr.datatypes.ValueType

Datatype representing a boolean
__abstractmethods__ =frozenset([])

__module__ = ‘fastr.datatypes’

4.1. fastr Package 63

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

_str__ ()

description = ‘A boolean value (True of False)’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘Boolean’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/pythe

value
The value of object instantiation of this DataType.

class fastr.datatypes.DataType (value=None, format_=None)
Bases: fastr.datatypes.BaseDataType

This class is the base class for all DataTypes that can hold a value.
__abstractmethods__ =frozenset([’__init_ ’])

__init__ (value=None, format_=None)
The DataType constructor.

Parameters
* value - value to assign to the new DataType object
* format — the format used for the ValueType
Returns new DataType object
__module___ = ‘fastr.datatypes’

action (name)
This function can be overwritten by subclasses to implement certain action that should be performed.
For example, the Directory DataType has an action ensure. This method makes sure the Directory
exists. A Tool can indicate an action that should be called for an Output which will be called before
execution.

Parameters name (st r) — name of the action to execute
Returns None

class fastr.datatypes.Deferred (value=None, format_=None)
Bases: fastr.datatypes.DataType

__abstractmethods_ = frozenset([])
__getstate_ ()

__init__ (value=None, format_=None)
The Deferred constructor.

Parameters
* value - value to assign to the new DataType object
e format — This is ignore but here for compatibility
Returns new Deferred object
__module__ = ‘fastr.datatypes’

__repr_ ()
Returns string representation of the BaseDataType

Returns string represenation
Return type str
__ _setstate__ (state)

checksum ()
Generate a checksum for the value of this DataType

Returns the checksum of the value

64 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Return type str
data_uri
job
classmethod lookup (value)
Look up the deferred target and return that object
Param value
Returns The value the deferred points to
Return type DataType
Raises
* FastrKeyError — if the deferred is not available (yet)
e FastrValueError — if the value is not a valid deferrred url
provenance

target
Target object for this deferred.

Raises
* FastrKeyError — if the deferred is not available (yet)
e FastrValueError — if the value is not a valid deferrred url

value
The value of object instantiation of this DataType.

class fastr.datatypes.Directory (value=None, format_=None)

Bases: fastr.datatypes.URLType
DataType representing a directory.
__abstractmethods__ = frozenset([])

__eq__ (other)
Directories are equal by default as long as the validatity matches.

Parameters other (Directory) — other to compare against
Returns equality flag
__module___ = ‘fastr.datatypes’

action (name)
This method makes sure the Directory exists. A Tool can indicate an action that should be called for
an Output which will be called before execution.

Parameters name (st r)— name of the action to execute
Returns None
description = ‘A directory on the disk’
extension = None
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas

module = <module ‘Directory’ from ‘’home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/pyt

class fastr.datatypes.EnumType (value=None, format_=None)

Bases: fastr.datatypes.DataType

The EnumType is the base for DataTypes that can have a value which is an option from a predefined set of
possibilities (similar to an enum type in many programming languages).

__abstractmethods__ = frozenset([])

4.1. fastr Package 65

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

__init__ (value=None, format_=None)
The EnumType constructor.

Parameters
* value - value to assign to the new EnumType object
* format — the format used for the ValueType
Returns new EnumType object
Raises FastrDataTypeNotInstantiableError - if not subclassed
__module___ = ‘fastr.datatypes’
description = ‘EnumType (EnumType) is a enumerate type with options:\n\n\nEnumType can take the value of ar
options = frozenset([])
version = <Version: 1.0>

class fastr.datatypes.Float (value=None, format_=None)
Bases: fastr.datatypes.ValueType

__abstractmethods__ =frozenset([])

__module__ = ‘fastr.datatypes’

description = ‘A floating point value’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘Float’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python?

value
The value of object instantiation of this DataType.

class fastr.datatypes.ITKImageFile (value=None)
Bases: fastr.datatypes. TypeGroup

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘Text file to store point coordinates’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘ITKImageFile’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lik

class fastr.datatypes.Int (value=None, format_=None)
Bases: fastr.datatypes.ValueType

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘an integer value’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘Int’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7

value
The value of object instantiation of this DataType.

class fastr.datatypes.MetaImageFile (value=None, format_=None)
Bases: fastr.datatypes.URLType

__abstractmethods__ = frozenset([])
__eq__ (other)
__module___ = ‘fastr.datatypes’

66 Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

checksum ()
Return the checksum of this MetalmageFile

Returns checksum string
Return type str
classmethod content (invalue, outvalue=None)
description = ‘Meta Image file format’
extension = ‘mhd’
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘MetalmageFile’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/li

class fastr.datatypes.NiftiImageFile (value=None)
Bases: fastr.datatypes. TypeGroup

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘NiftiTypeGroup’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘NiftilmageFile’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lil

class fastr.datatypes.NiftiImageFileCompressed (value=None, format_=None)
Bases: fastr.datatypes.URLType

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘Compressed Nifti Image File format’

extension = ‘nii.gz’

filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘NiftilmageFileCompressed’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/

class fastr.datatypes.NiftiImageFileUncompressed (value=None, format_=None)
Bases: fastr.datatypes.URLType

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘Nifti Image File format’

extension = ‘nii’

filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘NiftilmageFileUncompressed’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/en

class fastr.datatypes.Number (value=None)
Bases: fastr.datatypes.TypeGroup

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘an numeric value’

filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘Number’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/pyth

class fastr.datatypes.String (value=None, format_=None)
Bases: fastr.datatypes.ValueType

4.1. fastr Package 67

https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘A simple string value’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘String’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python

class fastr.datatypes.TifImageFile (value=None, format_=None)
Bases: fastr.datatypes.URLType

__abstractmethods__ = frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘Tif Image File format’

extension = ‘tif’

filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘TiflmageFile’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/

class fastr.datatypes. TypeGroup (value=None)
Bases: fastr.datatypes.BaseDataType

The TypeGroup is a special DataType that does not hold a value of its own but is used to group a number
of DataTypes. For example ITK has a list of supported file formats that all tools build on ITK support. A
group can be used to conveniently specify this in multiple Tools that use the same set DataTypes.

__abstractmethods__ = frozenset([’_members’])

__init__ (value=None)
Dummy constructor. TypeGroups are not instantiable and cannot hold a value of its own.

Raises FastrDataTypeNotInstantiableError —if called
__module__ = ‘fastr.datatypes’

static __new___ (value=None, format_=None)
Instantiate a TypeGroup. This will for match the value to the best matching type and instantiate that.
Not that the returned object will not be of type TypeGroup but one of the TypeGroup members.

classmethod isinstance (value)

members
A descriptor that can act like a property for a class.

class fastr.datatypes.URLType (value=None, format_=None)
Bases: fastr.datatypes.DataType

The URLType is the base for DataTypes that point to a resource somewhere else (typically a filesystem).
The true value is actually the resource referenced by the value in this object.

__abstractmethods__ =frozenset([])

__eq__ (other)
Test the equality of two DataType objects

Parameters other (URLType) — the object to compare against
Returns flag indicating equality
Return type bool

__init__ (value=None, format_=None)
The URLType constructor

Parameters

* value - value to assign to the new URLType

68 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

» format — the format used for the ValueType
Returns new URLType object
__module___ = ‘fastr.datatypes’

checksum ()
Return the checksum of this URL type

Returns checksum string
Return type str

classmethod content (inval, outval=None)
Give the contents of a URLType, this is generally useful for filetypes that consists of multiple files
(e.g. AnalyzelmageFile, DICOM). The value will indicate the main file, and the contents function can
determine all files that form a single data value.

Parameters

* inval - a value to figure out contents for this type

* outval — the place where the copy should point to
Returns a list of all files part of the value (e.g. header and data file)
Return type list

parsed_value
The parsed value of object instantiation of this DataType.

valid
A boolean flag that indicates weather or not the value assigned to this DataType is valid. This property
is generally overwritten by implementation of specific DataTypes.

class fastr.datatypes.UnsignedInt (value=None, format_=None)
Bases: fastr.datatypes.ValueType

__ abstractmethods__ =frozenset([])

__module___ = ‘fastr.datatypes’

description = ‘an unsigned integer value’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘UnsignedInt’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/}

value
The value of object instantiation of this DataType.

class fastr.datatypes.ValueType (value=None, format_=None)
Bases: fastr.datatypes.DataType

The ValueType is the base for DataTypes that hold simple values (not an EnumType and not a file/URL).
The values is generally represented by a string.

__abstractmethods__ = frozenset([])

__init__ (value=None, format_=None)
The ValueType constructor

Parameters
* value - value to assign to the new ValueType
* format — the format used for the ValueType
Returns new ValueType object

__module___ = ‘fastr.datatypes’

4.1. fastr Package 69

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#list

FASTR Documentation, Release 1.1.2

class fastr.datatypes.__ioplugin__behaviour__Enum___ (value=None, format_=None)
Bases: fastr.datatypes.EnumType

__abstractmethods__ =frozenset([])
__module__ = ‘fastr.datatypes’
parent = DataTypeManager AnalyzelmageFile : <URLType: AnalyzelmageFile> AnyFile : <TypeGroup: AnyFile>

fastr.datatypes.fastr_ isinstance (obj, datatype)
Check if an object is of a specific datatype.

Parameters

* obj - Object to inspect

* datatype (tuple, BaseDataType)— The datatype(s) to check
Returns flag indicating object is of datatype

Return type bool

exceptions Module

This module contains all Fastr-related Exceptions

exception fastr.exceptions.FastrAttributeError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.AttributeError

AttributeError in the fastr system
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrCannotChangeAttributeError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Attempting to change an attribute of an object that can be set only once.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrCardinalityError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The description of the cardinality is not valid.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrDataTypeFileNotReadable (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Could not read the datatype file.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrDataTypeMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

When using a DataType as the key for the DataTypeManager, the DataTypeManager found another
DataType with the same name already in the DataTypeManager. The means fastr has two version of the
same DataType in the system, which should never happen!

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrDataTypeNotAvailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The DataType requested is not found by the fastr system. Typically this means that no matching DataType
is found in the DataTypeManager.

__module___ = ‘fastr.exceptions’

70 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError

FASTR Documentation, Release 1.1.2

exception fastr.exceptions.FastrDataTypeNotInstantiableError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The base classes for DataTypes cannot be instantiated and should always be sub-classed.
_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrDataTypeValueError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

This value in fastr did not pass the validation specificied for its DataType, typically means that the data is
missing or corrupt.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrError (*args, **kwargs)
Bases: exceptions.Exception

This is the base class for all fastr related exceptions. Catching this class of exceptions should ensure a proper
execution of fastr.

__init__ (*args, **kwargs)
Constructor for all exceptions. Saves the caller object fullid (if found) and the file, function and line
number where the object was created.

__module___ = ‘fastr.exceptions’

__str__ ()
String representation of the error

Returns error string
Return type str

___weakref
list of weak references to the object (if defined)

excerpt ()
Return a excerpt of the Error as a tuple.

exception fastr.exceptions.FastrErrorInSubprocess (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

Encountered an error in the subprocess started by the execution script
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrExecutableNotFoundError (executable=None, *args,

**kwargs)
Bases: fastr.exceptions.FastrExecutionError

The executable could not be found!
__init__ (executable=None, *args, **kwargs)
__module___ = ‘fastr.exceptions’

__str_ ()
String representation of the error

exception fastr.exceptions.FastrExecutionError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Base class for all fastr execution related errors
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrIOError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.IOError

IOError in the fastr system

4.1. fastr Package 7

https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/exceptions.html#exceptions.IOError

FASTR Documentation, Release 1.1.2

__module___ = ‘fastr.exceptions’

__ _weakref
list of weak references to the object (if defined)

exception fastr.exceptions.FastrImportError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.ImportError

ImportError in the fastr system
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrIndexError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.IndexError

IndexError in the fastr system
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrIndexNonexistent (*args, **kwargs)
Bases: fastr.exceptions.FastrIndexError

This is an IndexError for samples requested from a sparse data array. The sample is not there but is probably
not there because of sparseness rather than being a missing sample (e.g. out of bounds).

_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrKeyError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.KeyError

KeyError in the fastr system
_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrLookupError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Could not find specified object in the fastr environment.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrMountUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Trying to access an undefined mount
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNetworkMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Two interacting objects belong to different fastr network.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNetworkUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Reference to a Tool that is not recognised by the fastr system. This typically means the specific id/version
combination of the requested tool has not been loaded by the ToolManager.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNoValidTargetError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Cannot find a valid target for the tool

__module___ = ‘fastr.exceptions’

72 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/exceptions.html#exceptions.ImportError
https://docs.python.org/2.7/library/exceptions.html#exceptions.IndexError
https://docs.python.org/2.7/library/exceptions.html#exceptions.KeyError

FASTR Documentation, Release 1.1.2

exception fastr.exceptions.FastrNodeAreadyPreparedError (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

A attempt is made at preparing a Node for the second time. This is not allowed as it would wipe the current
execution data and cause data-loss.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNodeNotPreparedError (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

When trying to access executation data of a Node, the Node must be prepare. The Node has not been
prepared by the execution, so the data is not available!

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNodeNotValidError (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

A Node is not in a valid state where it should be, typically an invalid Node is passed to the executor causing
trouble.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNotExecutableError (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

The command invoked by subprocess is not executable on the system
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrNotImplementedError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.NotImplementedError

This function/method has not been implemented on purpose (e.g. should be overwritten in a sub-class)
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrOSError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.OSError

OSError in the fastr system
__module___ = ‘fastr.exceptions’

___weakref
list of weak references to the object (if defined)

exception fastr.exceptions.FastrObjectUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Reference to a Tool that is not recognised by the fastr system. This typically means the specific id/version
combination of the requested tool has not been loaded by the ToolManager.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrOptionalModuleNotAvailableError (*args,

**kwargs)
Bases: fastr.exceptions.FastrNotImplementedError

A optional modules for Fastr is needed for this function, but is not available on the current python installa-
tion.

_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrOutputValidationError (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

An output of a Job does not pass validation

_ _module__ = ‘fastr.exceptions’

4.1. fastr Package 73

https://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError
https://docs.python.org/2.7/library/exceptions.html#exceptions.OSError

FASTR Documentation, Release 1.1.2

exception fastr.exceptions.FastrParentMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Two interactive objects have different parent where they should be the same
_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrPluginNotAvailable (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Indicates that a requested Plugin was not found on the system.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrPluginNotLoaded (*args, **kwargs)
Bases: fastr.exceptions.FastrStateError

The plugin was not successfully loaded. This means the plugin class cannot be instantiated.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrResultFileNotFound (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

Could not found the result file of job that finished. This means the executionscript process was killed during
interruption. Generally this means a scheduler killed it because of resource shortage.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSerializationError (message, serializer, origi-
nal_exception=None)
Bases: fastr.exceptions.FastrError

The serialization encountered a serious problem
__init__ (message, serializer, original_exception=None)
_ _module__ = ‘fastr.exceptions’

__repr_ ()
Simple string representation of the exception

str__ ()
Advanced string representation of the exception including the data about where in the schema things

went wrong.

exception fastr.exceptions.FastrSerializationIgnoreDefaultError (message, seri-
alizer, origi-
nal_exception=None)
Bases: fastr.exceptions.FastrSerializationError

The value and default are both None, so the value should not be serialized.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSerializationInvalidDataError (message, se-
rializer, origi-
nal_exception=None)
Bases: fastr.exceptions.FastrSerializationError

Encountered data to serialize that is invalid given the serialization schema.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSerializationMethodError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

The desired serialization method does not exist.

__module___ = ‘fastr.exceptions’

74 Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

exception fastr.exceptions.FastrSinkDataUnavailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Could not find the Sink data for the desire sink.
_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSizeInvalidError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The given size cannot be valid.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSizeMismatchError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The size of two object in fastr is not matching where it should.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSizeUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The size of object is not (yet) known and only a theoretical estimate is available at the moment.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSourceDataUnavailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Could not find the Source data for the desire source.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrStateError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

An object is in an invalid/unexpected state.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrSubprocessNotFinished (*args, **kwargs)
Bases: fastr.exceptions.FastrExecutionError

Encountered an error before the subprocess call by the execution script was properly finished.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrToolNotAvailableError (*args, **kwargs)
Bases: fastr.exceptions.FastrError

The tool used is not available on the current platform (OS and architecture combination) and cannot
be used.

__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrToolTargetNotFound (*args, **kwargs)
Bases: fastr.exceptions.FastrError

Could not determine the location of the tools target binary/script. The tool cannot be used.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrToolUnknownError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Reference to a Tool that is not recognised by the fastr system. This typically means the specific id/version
combination of the requested tool has not been loaded by the ToolManager.

__module___ = ‘fastr.exceptions’

4.1. fastr Package 75

FASTR Documentation, Release 1.1.2

exception fastr.exceptions.FastrTypeError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.TypeError

TypeError in the fastr system
_ _module__ = ‘fastr.exceptions’

exception fastr.exceptions.FastrUnknownURLSchemeError (*args, **kwargs)
Bases: fastr.exceptions.FastrKeyError

Fastr encountered a data URL with a scheme that was not recognised by the IOPlugin manager.
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrValueError (*args, **kwargs)
Bases: fastr.exceptions.FastrError,exceptions.ValueError

ValueError in the fastr system
__module___ = ‘fastr.exceptions’

exception fastr.exceptions.FastrVersionInvalidError (*args, **kwargs)
Bases: fastr.exceptions.FastrValueError

The string representation of the version is malformatted.

__module___ = ‘fastr.exceptions’

plugins Module

The plugins module holds all plugins loaded by Fastr. It is empty on start and gets filled by the BasePluginManager

class fastr.plugins.BlockingExecution (finished_callback=None, cancelled_callback=None,

status_callback=None)
Bases: fastr.execution.executionpluginmanager.ExecutionPlugin

The blocking execution plugin is a special plugin which is meant for debug purposes. It will not queue jobs
but immediately execute them inline, effectively blocking fastr until the Job is finished. It is the simplest
execution plugin and can be used as a template for new plugins or for testing purposes.

__ abstractmethods_ = frozenset([])

__init__ (finished_callback=None, cancelled_callback=None, status_callback=None)

__module___ = ‘fastr.plugins’

cleanup ()

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘blockingexecution’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/loce

class fastr.plugins.CommaSeperatedvValueFile
Bases: fastr.core.ioplugin.IOPlugin

The CommaSeperatedValueFile an expand-only type of IOPlugin. No URLSs can actually be fetched, but it
can expand a single URL into a larger amount of URLs.

The csv:// URL is a vEs:// URL with a number of query variables available. The URL mount and
path should point to a valid CSV file. The query variable then specify what column(s) of the file should be
used.

The following variable can be set in the query:

76 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/exceptions.html#exceptions.TypeError
https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError

FASTR Documentation, Release 1.1.2

variable usage

value the column containing the value of interest, can be int for index or string for key

id the column containing the sample id (optional)

header indicates if the first row is considered the header, can be t rue or false (optional)

delimiter the delimiter used in the csv file (optional)

quote the quote character used in the csv file (optional)

reformat a reformatting string so that value = reformat.format (value) (used before
relative_path)

rela- indicates the entries are relative paths (for files), can be t rue or false (optional)

tive_path

The header is by default false if the neither the value and id are set as a string. If either of these are a
string, the header is required to define the column names and it automatically is assumed t rue

The delimiter and quota characters of the file should be detected automatically using the Sni f fer, but can
be forced by setting them in the URL.

Example of valid csv URLs:

Use the first column in the file (no header row assumed)
csv://mount/some/dir/file.csv?value=0

Use the images column in the file (first row is assumed header row)
csv://mount/some/dir/file.csv?value=images

Use the segmentations column in the file (first row is assumed header row)
and use the id column as the sample id
csv://mount/some/dir/file.csv?value=segmentations&id=id

Use the first column as the id and the second column as the value
and skip the first row (considered the header)
csv://mount/some/dir/file.csv?value=1&id=0&header=true

Use the first column and force the delimiter to be a comma
csv://mount/some/dir/file.csv?value=0&delimiter=,

__abstractmethods_ = frozenset([])
__init_ ()
__module___ = ‘fastr.plugins’

expand_url (url)

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘commaseperatedvaluefile’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.
scheme = ‘csv’

class fastr.plugins.CrossValidation
Bases: flowinterface.FlowPlugin

Advanced flow plugin that generated a cross-validation data flow. The node need an input with data and an
input number of folds. Based on that the outputs test and train will be supplied with a number of data sets.

__ abstractmethods__ = frozenset([])

__module___ = ‘fastr.plugins’

static execute (payload)

filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas

module = <module ‘crossvalidation’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/li

4.1. fastr Package 77

https://docs.python.org/2.7/library/csv.html#csv.Sniffer

FASTR Documentation, Release 1.1.2

class fastr.plugins.DRMAAExecution (finished_callback=None, cancelled_callback=None, sta-

tus_callback=None)
Bases: fastr.execution.executionpluginmanager.ExecutionPlugin

A DRMAA execution plugin to execute Jobs on a Grid Engine cluster. It uses a configuration option for
selecting the queue to submit to. It uses the python drmaa package.

Note: To use this plugin, make sure the drmaa package is installed and that the execution is started on an
SGE submit host with DRMAA libraries installed.

Note: This plugin is at the moment tailored to SGE, but it should be fairly easy to make different subclasses
for different DRMAA supporting systems.

__abstractmethods__ = frozenset([])

__init__ (finished_callback=None, cancelled_callback=None, status_callback=None)

__module___ = ‘fastr.plugins’

cleanup ()

collect_jobs ()

configuration_fields = {‘drmaa_queue’: (<type ‘str’>, ‘week’, ‘The default queue to use for jobs send to the sc
filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘drmaaexecution’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/

send_job (command, arguments, queue=None, walltime=None, job_name=None, mem-
ory=None, ncores=None, joinLogFiles=False, outputLog=None, errorLog=None,
hold_job=None)

submit_jobs ()

class fastr.plugins.FastrInterface (id_, document)

Bases: fastr.core.interface.Interface

The default Interface for fastr. For the command-line Tools as used by fastr.

__abstractmethods__ = frozenset([])
__dataschemafile__ = ‘FastrInterface.schema.json’
__eq__ (other)

__getstate__ ()

Get the state of the FastrInterface object.
Returns state of interface
Return type dict
__init_ (id_, document)
_ _module__ = ‘fastr.plugins’

__setstate__ (state)
Set the state of the Interface

check_input_id (id_)
Check if an id for an object is valid and unused in the Tool. The method will always returns True if it
does not raise an exception.

Parameters id (st r) - the id to check

Returns True

78

Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Raises
* FastrValueError — if the id is not correctly formatted
* FastrValueError —if the id is already in use

check_output_id (id)
Check if an id for an object is valid and unused in the Tool. The method will always returns True if it
does not raise an exception.

Parameters id (st r) — the id to check

Returns True

Raises
* FastrValueError — if the id is not correctly formatted
* FastrValueError —if the id is already in use

collect_ results (result)
Collect all results of the interface

collector_plugin_type
alias of CollectorPlugin

collectors = CollectorPluginManager [37m[42m[1mLoaded[0m json : <CollectorPlugin: JsonCollector> [37m[42]

execute (target, payload)
Execute the interface using a specific target and payload (containing a set of values for the arguments)

Parameters
e target (SampleId)— the target to use
* payload (dict) — the values for the arguments
Returns result of the execution
Return type [nterfaceResult
expanding ()
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas

get_arguments (values)
Get the argument list for this interface

Returns return list of arguments

get_specials (payload, output, cardinality_nr)
Get special attributes. Returns tuples for specials, inputs and outputs that are used for formatting
substitutions.

Parameters
* output — Output for which to get the specials
* cardinality_nr (int) - the cardinality number
inputs
module = <module ‘fastrinterface’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib.

outputs

class fastr.plugins.FileSystem

Bases: fastr.core.ioplugin.IOPlugin

The FileSystem plugin is create to handle £ile:// type or URLs. This is generally not a good practice,
as this is not portable over between machines. However, for test purposes it might be useful.

The URL scheme is rather simple: £ile://host/path (see wikipedia for details)

4.1. fastr Package 79

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int
http://en.wikipedia.org/wiki/File_URI_scheme

FASTR Documentation, Release 1.1.2

We do not make use of the host part and at the moment only support localhost (just leave the host empty)
leading to file:/// URLs.

Warning: This plugin ignores the hostname in the URL and does only accept driver letters on Windows
in the form c: /

__abstractmethods__ =frozenset([])
__init_ ()
__module___ = ‘fastr.plugins’

fetch_url (inurl, outpath)
Fetch the files from the file.

Parameters
e inurl — url to the item in the data store, starts with £ile://
* outpath — path where to store the fetch data locally

fetch_value (inurl)
Fetch a value from an external file file.

Parameters inurl — url of the value to read

Returns the fetched value
filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘filesystem’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/pyt

path_to_url (path, mountpoint=None)
Construct an url from a given mount point and a relative path to the mount point.

put_url (inpath, outurl)
Put the files to the external data store.

Parameters
* inpath — path of the local data
¢ outurl — url to where to store the data, starts with file://

put_value (value, outurl)
Put the value in the external data store.

Parameters
* value - value to store
e outurl — url to where to store the data, starts with £ile://
scheme = ‘file’

url_to_path (url)
Get the path to a file from a url. Currently supports the file:// scheme

Examples:

>>> 'file:///d:/data/project/file.ext’
'd:\data\project\file.ext'

Warning: file:// will not function cross platform and is mainly for testing

80 Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

class fastr.plugins.FlowInterface (id_, document)
Bases: fastr.core.interface.Interface

The Interface use for AdvancedFlowNodes to create the advanced data flows that are not implemented in
the fastr. This allows nodes to implement new data flows using the plugin system.

The definition of FlowInterfaces are very similar to the default FastrInterfaces.

Note: A flow interface should be using a specific FlowPlugin

__abstractmethods__ = frozenset([])
__dataschemafile___ = ‘FastrInterface.schema.json’
__eq__ (other)

__getstate_ ()

Get the state of the FastrInterface object.
Returns state of interface
Return type dict
__init_ (id_, document)
__module___ = ‘fastr.plugins’

__ setstate__ (state)
Set the state of the Interface

execute (target, payload)
expanding ()
filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas

flow_plugin_type
alias of FlowPlugin

flow_plugins = FlowPluginManager [37m[42m[I1mLoaded[0m CrossValidation : <FlowPlugin: CrossValidation>
inputs

module = <module ‘flowinterface’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/
outputs

class fastr.plugins.LinearExecution (finished_callback=None, cancelled_callback=None,

status_callback=None)
Bases: fastr.execution.executionpluginmanager.ExecutionPlugin

An execution engine that has a background thread that executes the jobs in order. The queue is a simple
FIFO queue and there is one worker thread that operates in the background. This plugin is meant as a
fallback when other plugins do not function properly. It does not multi-processing so it is safe to use in
environments that do no support that.

__abstractmethods__ = frozenset([])

__init__ (finished_callback=None, cancelled_callback=None, status_callback=None)

__module___ = ‘fastr.plugins’

cleanup ()

exec_worker ()

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas

module = <module ‘linearexecution’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/li

4.1. fastr Package 81

https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

class fastr.plugins.NipypeInterface (id_, nipype_cls=None, document=None)

Bases: fastr.core.interface.Interface
Experimental interfaces to using nipype interfaces directly in fastr tools, only using a simple reference.

To create a tool using a nipype interface just create an interface with the correct type and set the nipype
argument to the correct class. For example in an xml tool this would become:

<interface class="Nipypelnterface">
<nipype_class>nipype.interfaces.elastix.Registration</nipype_class>
</interface>

Note: To use these interfaces nipype should be installed on the system.

Warning: This interface plugin is basically functional, but highly experimental!

__abstractmethods__ =frozenset([])

__eq__ (other)

__getstate_ ()

__init__ (id_, nipype_cls=None, document=None)
__module___ = ‘fastr.plugins’

__setstate_ (state)

execute (target, payload)
Execute the interface using a specific target and payload (containing a set of values for the arguments)

Parameters
* target (SampleId) - the target to use
* payload (dict) — the values for the arguments
Returns result of the execution
Return type InterfaceResult
expanding ()
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
get_type (trait)
inputs
module = <module ‘nipypeinterface’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/l
outputs

classmethod test ()

class fastr.plugins.Null

Bases: fastr.core.ioplugin.IOPlugin

The Null plugin is create to handle null:// type or URLs. These URLs are indicating the sink should
not do anything. The data is not written to anywhere. Besides the scheme, the rest of the URL is ignored.

__abstractmethods__ = frozenset([])
init ()
__module___ = ‘fastr.plugins’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas

82

Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

module = <module ‘null’ from ‘’home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.’

put_url (inpath, outurl)
Put the files to the external data store.

Parameters
* inpath — path of the local data
e outurl — url to where to store the data, starts with £ile://

put_value (value, outurl)
Put the value in the external data store.

Parameters
* value - value to store
e outurl — url to where to store the data, starts with file://
scheme = ‘null’

class fastr.plugins.ProcessPoolExecution (finished_callback=None, can-
celled_callback=None, status_callback=None,

nr_of_workers=None)
Bases: fastr.execution.executionpluginmanager.ExecutionPlugin

A local execution plugin that uses multiprocessing to create a pool of worker processes. This allows fastr
to execute jobs in parallel with true concurrency. The number of workers can be specified in the fastr
configuration, but the default amount is the number of cores - 1 with a minimum of 1.

Warning: The ProcessPoolExecution does not check memory requirements of jobs and running many
workers might lead to memory starvation and thus an unresponsive system.

__abstractmethods__ = frozenset([])

__init__ (finished_callback=None, cancelled_callback=None, status_callback=None,
nr_of_workers=None)

__module___ = ‘fastr.plugins’

cleanup ()

configuration_fields = {‘process_pool_worker_number’: (<type ‘int’>, 3, ‘Number of workers to use in a proc
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘processpoolexecution’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/]
classmethod test ()

class fastr.plugins.RQExecution (finished_callback=None, cancelled_callback=None, sta-

tus_callback=None)
Bases: fastr.execution.executionpluginmanager.ExecutionPlugin

A execution plugin based on Redis Queue. Fastr will submit jobs to the redis queue and workers will peel
the jobs from the queue and process them.

This system requires a running redis database and the database url has to be set in the fastr configuration.

Note: This execution plugin required the redis and rq packages to be installed before it can be loaded
properly.

__abstractmethods__ =frozenset([])
__init__ (finished_callback=None, cancelled_callback=None, status_callback=None)

__module___ = ‘fastr.plugins’

4.1. fastr Package 83

FASTR Documentation, Release 1.1.2

check_ finished()

cleanup ()

configuration_fields = {‘rq_queue’: (<type ‘str’>, ‘default’, ‘The redis queue to use’), ‘rq_host’: (<type ‘str’>,
filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘rgexecution’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/p

classmethod run_job (job_id, job_command, job_stdout, job_stderr)

class fastr.plugins.Reference

Bases: fastr.core.ioplugin.IOPlugin

The Reference plugin is create to handle ref:// type or URLs. These URLs are to make the sink just
write a simple reference file to the data. The reference file contains the DataType and the value so the result
can be reconstructed. It for files just leaves the data on disk by reference. This plugin is not useful for
production, but is used for testing purposes.

__ abstractmethods__ = frozenset([])
init ()
__module___ = ‘fastr.plugins’

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘reference’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/pytl

push_sink_data (value, outurl, datatype=None)
Write out the sink data from the inpath to the outurl.

Parameters
* value (st r) — the path of the data to be pushed
e outurl (st r)— the url to write the data to

* datatype (DataType) — the datatype of the data, used for determining the total
contents of the transfer

Returns None

scheme = ‘ref’

class fastr.plugins.VirtualFileSystem

Bases: fastr.core.ioplugin.IOPlugin

The virtual file system class. This is an IOPlugin, but also heavily used internally in fastr for working with
directories. The VirtualFileSystem uses the vfs: // url scheme.

A typical virtual filesystem url is formatted as vEs : / /mountpoint /relative/dir/from/mount.
ext

Where the mountpoint is defined in the Config file. A list of the currently known mountpoints can be
found in the fastr.config object

>>> fastr.config.mounts
{'example_data': '/home/username/fastr-feature-documentation/fastr/fastr/
—examples/data',

'home': '/home/username/',

'tmp': '/home/username/FastrTemp'}

This shows that a url with the mount home such as vfs://home/tempdir/testfile.txt would
be translated into /home /username/tempdir/testfile.txt.

There are a few default mount points defined by Fastr (that can be changed via the config file).

84

Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

mountpoint | default location

home the users home directory (expanduser ('~/"))
tmp the fastr temprorary dir, defaults to tempfile.gettempdir ()
example_data | the fastr example data directory, defaults SFASTRDIR/example/data
__abstractmethods_ = frozenset([])
__init_ ()

Instantiate the VES plugin
Returns the VirtualFileSysten plugin
__module___ = ‘fastr.plugins’

static copy_file_dir (inpath, outpath)
Helper function, copies a file or directory not caring what the inpath actually is

Parameters
* inpath — path of the things to be copied
* outpath — path of the destination

Returns the result of shutil.copy?2 or shutil.copytree (depending on inpath pointing to a file
or directory)

expand_url (url)
Try to expand the url. For vfs with will return the original url.

Parameters url — url to expand
Returns the expanded url (same as url)

fetch_url (inurl, outpath)
Fetch the files from the vfs.

Parameters
e inurl — url to the item in the data store, starts with vEs://
* outpath — path where to store the fetch data locally

fetch_ value (inurl)
Fetch a value from an external vfs file.

Parameters inurl — url of the value to read
Returns the fetched value

path_to_url (path, mountpoint=None, scheme=None)
Construct an url from a given mount point and a relative path to the mount point.

Parameters path (st r) — the path to find the url for
Mountpoint str mountpoint the url should be under
Returns url of the

put_url (inpath, outurl)
Put the files to the external data store.

Parameters
e inpath — path of the local data
e outurl — url to where to store the data, starts with vEs://

put_value (value, outurl)
Put the value in the external data store.

Parameters

e value - value to store

4.1. fastr Package 85

https://docs.python.org/2.7/library/os.path.html#os.path.expanduser
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

e outurl — url to where to store the data, starts with vEs://
scheme

setup ()
The plugin setup, does nothing but needs to be implemented

url_to_path (url, scheme=None)
Get the path to a file from a vfs url

Parameters url (str)—url to get the path for
Returns the matching path
Return type str
Raises
* FastrMountUnknownError — if the mount in url is unknown
e FastrUnknownURLSchemeError — if the url scheme is not correct

Example (the mountpoint tmp points to /tmp):

>>> fastr.vfs.url_to_path('vfs://tmp/file.ext"')
'/tmp/file.ext'

class fastr.plugins.VirtualFileSystemRegularExpression
Bases: fastr.core.ioplugin.IOPlugin

The VirtualFileSystemValueList an expand-only type of IOPlugin. No URLs can actually be fetched, but it
can expand a single URL into a larger amount of URLs.

A vfsregex:// URLis a vfs URL that can contain regular expressions on every level of the path. The
regular expressions follow the re module definitions.

An example of a valid URLs would be:

vifsregex://tmp/network_dir/.*/.*/__fastr_result__.pickle.gz
visregex://tmp/network_dir/nodeX/ (?P<id>.x)/__fastr_result__.pickle.gz

The first URL would result in all the ___fastr_result__ .pickle.gz in the working directory of a
Network. The second URL would only result in the file for a specific node (nodeX), but by adding the named
group id using (?P<id>.«) the sample id of the data is automatically set to that group (see Regular
Expression Syntax under the special characters for more info on named groups in regular expression).

Concretely if we would have a directory vfs://mount /somedir containing:

image_1/Image.nii
image_2/image.nii
image_3/anotherimage.nii
image_5/inconsistentnamingftw.nii

we could match these files using vfsregex://mount/somedir/ (?P<id>image_\d+)/.*\.
nii which would result in the following source data after expanding the URL:

{'image_1': 'vfs://mount/somedir/image_1/Image.nii’',
'image_2': 'vfs://mount/somedir/image_2/image.nii',
'image_3': 'vfs://mount/somedir/image_3/anotherimage.nii',
'image_5': 'vfs://mount/somedir/image_5/inconsistentnamingftw.nii'}

Showing the power of this regular expression filtering. Also it shows how the ID group from the URL can
be used to have sensible sample ids.

86 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/re.html#module-re
https://docs.python.org/2.7/library/re.html#re-syntax
https://docs.python.org/2.7/library/re.html#re-syntax

FASTR Documentation, Release 1.1.2

Warning: due to the nature of regexp on multiple levels, this method can be slow when having many
matches on the lower level of the path (because the tree of potential matches grows) or when directories
that are parts of the path are very large.

__abstractmethods_ = frozenset([])
__init_ ()
__module___ = ‘fastr.plugins’

expand_url (url)

filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/1ocal/lib/python2.7/site-packages/fas
module = <module ‘virtualfilesystemregularexpression’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fas
scheme = ‘vfsregex’

class fastr.plugins.VirtualFileSystemValueList
Bases: fastr.core.ioplugin.IOPlugin

The VirtualFileSystemValueList an expand-only type of IOPlugin. No URLs can actually be fetched, but it
can expand a single URL into a larger amount of URLs. A vEslist:// URL basically is a url that points
to a file using vfs. This file then contains a number lines each containing another URL.

If the contents of a file vfs://mount /some/path/contents would be:

vfs://mount/some/path/filel.txt
vfs://mount/some/path/file2.txt
vfs://mount/some/path/file3.txt
vfs://mount/some/path/file4d.txt

Then using the URL vfslist://mount/some/path/contents as source data would result in the
four files being pulled.

Note: The URLs in a vfslist file do not have to use the vfs scheme, but can use any scheme known to the
Fastr system.

__abstractmethods__ = frozenset([])
init ()
__module___ = ‘fastr.plugins’

expand_url (url)
filename = ‘‘home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘virtualfilesystemvaluelist’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.
scheme = ‘vfslist’

class fastr.plugins.XNATStorage
Bases: fastr.core.ioplugin.IOPlugin

Warning: As this IOPlugin is under development, it has not been thoroughly tested.

The XNATStorage plugin is an IOPlugin that can download data from and upload data to an XNAT server. It
uses its own xnat : // URL scheme. This is a scheme specific for this plugin and though it looks somewhat
like the XNAT rest interface, a different type or URL.

Data resources can be access directly by a data url:

4.1. fastr Package 87

FASTR Documentation, Release 1.1.2

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/
—experiments/experiment001/scans/Tl/resources/DICOM

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/
—experiments/+_BRAIN/scans/Tl/resources/DICOM

In the second URL you can see a wildcard being used. This is possible at long as it resolves to exactly one
item.

The id query element will change the field from the default experiment to subject and the 1abel query
element sets the use of the label as the fastr id (instead of the XNAT id) to True (the default is False)

To disable https transport and use http instead the query string can be modified to add
insecure=true. This will make the plugin send requests over ht tp:

xnat://xnat.example.com/data/archive/projects/sandbox/subjects/subject001/
—experiments/+_BRAIN/scans/Tl/resources/DICOM?insecure=true

For sinks it is import to know where to save the data. Sometimes you want to save data in a new asses-
sor/resource and it needs to be created. To allow the Fastr sink to create an object in XNAT, you have to
supply the type as a query parameter:

xnat://xnat.bmia.nl/data/archive/projects/sandbox/subjects/S01/experiments/_
—BRAIN/assessors/test_assessor/resources/IMAGE/files/image.nii.gz?resource_
—type=xnat:resourceCatalog&assessor_type=xnat:qcAssessmentData

Valid options are: subject_type, experiment_type, assessor_type, scan_type, and resource_type.

If you want to do a search where multiple resources are returned, it is possible to use a search url:

xnat://xnat.example.com/search?projects=sandbox&subjects=subject [0-9] [0-9] [0-
—9] &experiments=+_BRAIN&scans=Tl&resources=DICOM

This will return all DICOMs for the T1 scans for experiments that end with _BRAIN that belong to a
subjectXXX where XXX is a 3 digit number. By default the ID for the samples will be the experiment XNAT
ID (e.g. XNAT_E00123). The wildcards that can be the used are the same UNIX shell-style wildcards as
provided by the module fnmatch.

It is possible to change the id to a different fields id or label. Valid fields are project, subject, experiment,
scan, and resource:

xnat://xnat.example.com/search?projects=sandbox&subjects=subject [0-9] [0-9] [0—
—9] &experiments=+_BRAIN&scans=Tl&resources=DICOM&id=subject&label=true

The following variables can be set in the search query:

variable default usage

projects * The project(s) to select, can contain wildcards (see fnmatch)

subjects * The subject(s) to select, can contain wildcards (see fnmatch)

experi- * The experiment(s) to select, can contain wildcards (see fnmatch)

ments

scans * The scan(s) to select, can contain wildcards (see fnmatch)

resources * The resource(s) to select, can contain wildcards (see fnmatch)

id experiment| What field to use a the id, can be: project, subject, experiment, scan, or
resource

label false Indicate the XNAT label should be used as fastr id, options t rue or
false

insecure false Change the url scheme to be used to http instead of https

regex false Change search to use regex re .match () instead of fnmatch for
matching

For storing credentials the .netrc file can be used. This is a common way to store credentials on UNIX
systems. It is required that the file is only accessible by the owner only or a Net rcParseError will be

88 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch
https://docs.python.org/2.7/library/re.html#re.match

FASTR Documentation, Release 1.1.2

raised. A netrc file is really easy to create, as its entries look like:

machine xnat.example.com
login username
password secretl23

See the net rc module or the GNU inet utils website for more information about the . net rc file.

Note: On windows the location of the netrc file is assumed to be os.path.expanduser ('~/
_netrc'). The leading underscore is because windows does not like filename starting with a dot.

Note: For scan the label will be the scan type (this is initially the same as the series description, but can be
updated manually or the XNAT scan type cleanup).

Warning: labels in XNAT are not guaranteed to be unique, so be careful when using them as the sample
ID.

For background on XNAT, see the XNAT API DIRECTORY for the REST API of XNAT.

__abstractmethods__ = frozenset([])
__init__ ()

__module___ = ‘fastr.plugins’

cleanup ()

connect (server, path="", insecure=False)

expand_url (url)

fetch_url (inurl, outpath)
Get the file(s) or values from XNAT.

Parameters
e inurl — url to the item in the data store
* outpath — path where to store the fetch data locally
* datatype — the DataType of the retrieved URL
filename = ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/python2.7/site-packages/fas
module = <module ‘xnatstorage’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/fastr/envs/1.1.2/local/lib/p

put_url (inpath, outurl)
Upload the files to the XNAT storage

Parameters
* inpath — path to the local data
e outurl — url to where to store the data in the external data store.
scheme = ‘xnat’
server
xnat

fastr.plugins. json
alias of JsonCollector

4.1. fastr Package 89

https://docs.python.org/2.7/library/netrc.html#module-netrc
http://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html#The-_002enetrc-file
https://wiki.xnat.org/display/XNAT16/XNAT+REST+API+Directory

FASTR Documentation, Release 1.1.2

fastr.plugins.path
alias of PathCollector

fastr.plugins.stdout
alias of StdoutCollector

version Module
This module keeps track of the version of the currently used Fastr framework. It can check its version from
mercurial or a saved file

fastr.version.clear_version|()
Remove the cached version info

fastr.version.get_base_version ()
Get the version from the top-level version file

Returns the version
Rtype str

fastr.version.get_hg_info ()
Read information about the current mercurial branch and revision

Returns tuple containing head revision and branch

fastr.version.get_saved_version ()
Get cached version from file

Returns tuple with version, head revision and branch

fastr.version.save_version (current_version, current_hg_head, current_hg_branch)
Cache the version information (useful for when installing)

Parameters
e current_version (str)— version
* current_hg_ head (st r)— mercurial head revision
e current_hg branch (st r)— mercurial branch

Returns

Subpackages
core Package

core Package

This module contains all of the core components of fastr. It has the classes to create networks and work with them.

basemanager Module

This module contains the core class for all managers

class fastr.core.basemanager.BaseManager (path=None, recursive=False)
Bases: _abcoll.MutableMapping

Baseclass for a Manager, subclasses needs to override the following methods:
BaseManager._item_extension, BaseManager._load_item()

920 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

_item extension|()
Abstract property that sets the extension of the files to be loaded by the BaseManager. When scanning
for items, only files with this extension will be loaded.

Returns desired extension
Return type str
Raises FastrNotImplementedError — if property not reimplemented in subclass

_load_item (filepath, namespace)
Abstract method to load an item of the BaseManager. This function is not implemented and needs to
be reimplemented by a subclass.

Parameters

* filepath (str) — path of the item to load

* namespace (st r) — the namespace of the item to be loaded
Returns the loaded item

Raises FastrNotImplementedError — if called without being reimplemented by a
subclass

__ abstractmethods__ = frozenset([’_load_item’, ‘_item_extension’])

__delitem__ (key)
Remove item from the BaseManager

Parameters key — key of the item to remove
Returns None
Raises FastrKeyError — if the key is not found in the BaseManager

__getitem__ (key)
Retrieve item from BaseManager

Parameters key — the key of the item to retrieve
Returns the value indicated by the key
Raises FastrKeyError —if the key is not found in the BaseManager

__init__ (path=None, recursive=False)
The BaseManager constructor

Parameters
e path (str or None) - path to scan for items, or None for no path
* recursive (bool) - Flag to indicate a recursive search is desired
Returns the newly created BaseManager
Return type BaseManager

__diter_ ()
Get an iterator from the BaseManager. The iterator will iterate over the keys of the BaseManager.

Returns the iterator
Return type dictionary-keyiterator

__keytransform__ (key)
Identity transform for the keys. This function can be reimplemented by a subclass to implement a
different key transform.

Parameters key — key to transform

Returns the transformed key (in this case the same key as inputted)

41.

fastr Package 91

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

len__ ()
Return the number of items in the BaseManager

Returns number of items in the BaseManager
Return type int

__metaclass_
alias of ABCMeta

__module__ = ‘fastr.core.basemanager’

__repr__ ()
Convert the BaseManager to a representation string.

Returns Representation string
Return type str

__setitem__ (key, value)
Set item in the BaseManager

Parameters

* key - the key of the item to store

¢ value - the value of the item to store
Returns None

data
The actual data dict underlying this Manager

match_filename (filename)
Check if the filename matches the pattern the manager expects.

Parameters filename - filename to match
Returns flag indicating that the filename matches

populate ()
Populate the manager with the data. This is a method that will be called when the Managers data is
first accessed. This way we avoid doing expensive directory scans when the data is never requested.

reload()
Reload entire contents of this manager.

baseplugin Module

The base class for all Plugins in the fastr system

class fastr.core.baseplugin.BasePlugin
Bases: object

Base class for Plugins in the fastr system.

__abstractmethods__ = frozenset([])
__dict___ =dict_proxy({‘status’: <fastr.utils.classproperty.ClassPropertyDescriptor object>, ‘_ _module__’: ‘fastr.cc
__dinit__ ()

The BasePlugin constructor.
Returns the created plugin
Return type BasePlugin
Raises FastrPluginNotLoaded — if the plugin did not load correctly

_ _metaclass_
alias of P1uginMeta

92 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#object

FASTR Documentation, Release 1.1.2

class

class

class

__module___ = ‘fastr.core.baseplugin’
__repr__ ()

__str_ ()
Creare string representation of the plugin.

Returns string represenation
Return type str

__weakref
list of weak references to the object (if defined)

cleanup ()
Perform any cleanup action needed when the plugin use ended. This can be closing files/streams etc.

configuration_fields = {}
fullid = ‘fastr://plugins/BasePlugin’
id = ‘BasePlugin’

instantiate = False

module = None

classmethod register_ configuration ()
Register and test the configuation fields of the plugin

classmethod set_code (source_code)
Set the filename and source code of the plugin

Parameters source_code (str) — the source code of the plugin

classmethod set_status (status, message, exception=None)
Update the status of the plugin

Parameters
e status (str) - the new status
* message (str)— message explaining the status change
* exception (str)—stacktrace of the exception causing the failed load

source_code
A descriptor that can act like a property for a class.

status = ‘\x1b[46mUnlInitialized\x1b[0m’
status_message = ‘Plugin object created’

classmethod test ()
Test the plugin, default behaviour is just to instantiate the plugin

fastr.core.baseplugin.Plugin
Bases: fastr.core.baseplugin.BasePlugin

__abstractmethods__ = frozenset([])
__module___ = ‘fastr.core.baseplugin’

fastr.core.baseplugin.PluginMeta
Bases: abc.ABCMeta

_ _module__ = ‘fastr.core.baseplugin’
__repr__ ()

fastr.core.baseplugin.PluginState
Bases: enum.Enum

__format__ (format_spec)

41.

fastr Package 93

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/abc.html#abc.ABCMeta

FASTR Documentation, Release 1.1.2

__module___ = ‘fastr.core.baseplugin’
static___new__ (value)
__reduce_ex__ (proto)

__repr_ ()

__str__ ()

failed = ‘x1b[37m\x1b[41m\x1b[1mFailed\x1b[0m’
loaded = ‘\x1b[37m\x1b[42m\x1b[1mLoaded\x1b[0m’
preload = “‘\x1b[102mPreLoad\x1b[0m’
uninitialized = “‘\x1b[46mUnlnitialized\x1b[0m’

unloaded = ‘\x1b[46mUnLoaded\x1b[0m’

datatypemanager Module

This module manages datatypes. These datatypes are python classes generated from the XML/JSON datatype
files.

class fastr.core.datatypemanager .DataTypeManager
Bases: fastr.core.pluginmanager.BasePluginManager

The DataTypeManager hold a mapping of all DataTypes in the fast system and can create new DataTypes
from files/data structures.

__abstractmethods__ = frozenset([])

__dinit__ ()
The DataTypeManager constructor will create a new DataTypeManager and populate it with all
DataTypes it can find in the paths setin fastr.config.types_path.

Returns the created DataTypeManager

__keytransform__ (key)
Key transformation for this mapping. The key transformation allows indexing by both the DataType
name as well as the DataType it self.

Parameters key (fastr.datatypes.BaseDataType or str)-— The name of the
requested datatype or the datatype itself

Returns The requested datatype
__module___ = ‘fastr.core.datatypemanager’

create_enumtype (type_id, options, name=None)
Create a python class based on an XML file. This function return a completely functional python class
based on the contents of a DataType XML file.

Such a class will be of type EnumType.
Parameters
e type_id (str) - the id of the new class
* options (iterable)— an iterable of options, each option should be str
Returns the newly created subclass of EnumType
Raises FastrTypeError — if the options is not an iterable of str

fullid
The fullid of the datatype manager

94 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

get_type (name)
Read a type given a typename. This will scan all directories in types_path and attempt to load the
newest version of the DataType.

Parameters name (st r)— Name of the datatype that should be imported in the system

Returns the datatype with the requested name, or None if datatype is not found

Note: If type is already in TypeManager it will not load anything and return the already loaded
version.

guess_type (value, exists=True, options=None, preferred=None)
Guess the DataType based on a value str.

Parameters
* value (str) — the value to guess the type for

* options (TypeGroup, DataType or tuple of DataTypes)— The op-
tions that are allowed to be guessed from

* extists (bool) - Indicate the value exists (if file) and can be checked for validity,
if false skip validity check

* preferred (iterable) — An iterable of preferred types in case multiple types
match.

Returns The resulting DataType or None if no match was found
Raises FastrTypeError — if the options argument is of the wrong type

The function will first create a list of all candidate DataTypes. Subsequently, it will check for each
candidate if the value would valid. If there are multiple matches, the config value for preferred types is
consulted to break the ties. If non of the DataTypes are in the preferred types list, a somewhat random
DataType will be picked as the most optimal result.

has_type (name)
Check if the datatype with requested name exists

Parameters name (st r) — the name of the requested datatype
Returns flag indicating if the datatype exists
Return type bool

static isdatatype (item)
Check if item is a valid datatype for the fastr system.

Parameters item - item to check
Returns flag indicating if the item is a fastr datatype
Return type bool

match_types (*args, **kwargs)
Find the match between a list of DataTypes/TypeGroups, see resolve-datatype for details

Parameters
* args — A list of DataType/TypeGroup objects to match

* kwargs — A ‘preferred’ keyword argument can be used to indicate a list of DataTypes
to prefer in case of ties (first has precedence over later in list)

Returns The best DataType match, or None if no match is possible.

Raises FastrTypeError —if not all args are subclasses of BaseDataType

match_types_any (*args)
Find the match between a list of DataTypes/TypeGroups, see resolve-datatype for details

41.

fastr Package 95

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

Parameters args — A list of DataType/TypeGroup objects to match
Returns A tuple with all DataTypes that match.

Return type set

Raises FastrTypeError —if not all args are subclasses of BaseDataType

plugin_class
The PluginClass of the items of the BasePluginManager

poll_datatype (filename)
Poll an xml file to see if there is a definition of a datatype in it.

Parameters filename (st r)— path of the file to poll

Returns tuple with (id, version, basetype) if a datatype is found or (None, None, None) if
no datatype is found

populate ()
Populate Manager. After scanning for DataTypes, create the AnyType and set the preferred types

dimension Module

class fastr.core.dimension.Dimension (name, size)
Bases: object

A class representing a dimension. It contains the name and size of the dimension.
__dict__ =dict_proxy({‘_ dict_ ’: <attribute ‘__dict_ ’ of ‘Dimension’ objects>, ‘. _module__’: ‘fastr.core.dimensi

__init__ (name, size)
The constructor for the dimension.

Parameters
¢ name (st r)— Name of the dimension
e size (int or sympy.Symbol) - Size fo the dimension
__module___ = ‘fastr.core.dimension’

__weakref
list of weak references to the object (if defined)

class fastr.core.dimension.HasDimensions
Bases: object

A Mixin class for any object that has a notion of dimensions and size. It uses the dimension property to
expose the dimension name and size.

__abstractmethods__ = frozenset([’dimensions’])
__dict___ =dict_proxy({‘__module__’: ‘fastr.core.dimension’, ‘°__metaclass__’: <class ‘abc.ABCMeta’>, ‘_abc_neg:
_ _metaclass_

alias of ABCMeta
__module___ = ‘fastr.core.dimension’

__weakref
list of weak references to the object (if defined)

dimensions
The dimensions has to be implemented by any subclass. It has to provide a tuple of Dimensions.

Returns dimensions

Return type tuple

96 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#tuple

FASTR Documentation, Release 1.1.2

dimnames
A tuple containing the dimension names of this object. All items of the tuple are of type str.

size
A tuple containing the size of this object. All items of the tuple are of type int or sympy.Symbol.

inputoutput Module

Classes for arranging the input and output for nodes.
Exported classes:

Input — An input for a node (holding datatype). Output — The output of a node (holding datatype and value).
ConstantOutput — The output of a node (holding datatype and value).

Warning: Don’t mess with the Link, Input and Output internals from other places. There will be a huge
chances of breaking the network functionality!

class fastr.core.inputoutput .AdvancedFlowOutput (node, description)
Bases: fastr.core.inputoutput.Output

__abstractmethods_ = frozenset([])
__module__ = ‘fastr.core.inputoutput’

dimnames
The dimnames of AdvancedFlowNodes have the output id appended, as the sizes per output can be
different.

class fastr.core.inputoutput .BaseInput (node, description)
Bases: fastr.core.inputoutput.BaselnputOutput

Base class for all inputs.
__abstractmethods___ =frozenset([’_update’, ‘fullid’, ¢__getitem__’, ‘num_subinput’, ‘itersubinputs’, ‘size’])

__init__ (node, description)
Instantiate a Baselnput

Parameters

* node - the parent node the input/output belongs to.

* description —the ParameterDescription describing the input/output.
Returns the created Baselnput
Raises

* FastrTypeError — if description is not of class ParameterDescription

e FastrDataTypeNotAvailableError — if the DataType requested cannot be
found in the fastr.typelist

__module___ = ‘fastr.core.inputoutput’

itersubinputs ()
Iterator over the SubInputs

Returns iterator

example:

>>> for subinput in input_a.itersubinputs/():
print subinput

4.1. fastr Package 97

FASTR Documentation, Release 1.1.2

num_subinput
The number of Sublnputs in this Input

class fastr.core.inputoutput .BaseInputOutput (node, description)
Bases: fastr.core.samples.HasSamples, fastr.core.updateable.Updateable,
fastr.core.serializable.Serializable

Base class for Input and Output classes. It mainly implements the properties to access the data from the
underlying ParameterDescription.

__abstractmethods___ =frozenset([’_update’, ‘fullid’, ‘__getitem__’, ‘size’])

__getstate_ ()
Retrieve the state of the BaseInputOutput

Returns the state of the object
Rtype dict

__init__ (node, description)
Instantiate a BaseInputOutput

Parameters

* node — the parent node the input/output belongs to.

* description —the ParameterDescription describing the input/output.
Returns created BaselnputOutput
Raises

* FastrTypeError —if description is not of class ParameterDescription

* FastrDataTypeNotAvailableError — if the DataType requested cannot be
found in the fastr.typelist

__diter_ ()
This function is blocked to avoid support for iteration using a lecacy __getitem__ method.

Returns None
Raises FastrNotImplementedError — always
__module___ = ‘fastr.core.inputoutput’

__repr_ ()
Get a string representation for the Input/Output

Returns the string representation
Return type str

__setstate__ (state)
Set the state of the BaseInputOutput by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

cardinality (key=None, job_data=None)
Determine the cardinality of this Input/Output. Optionally a key can be given to determine for a
sample.

Parameters key — key for a specific sample
Returns the cardinality
Return type int, sympy.Symbol, or None

check_cardinality (key=None)
Check if the actual cardinality matches the cardinality specified in the ParameterDescription. Option-
ally you can use a key to test for a specific sample.

98 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None

FASTR Documentation, Release 1.1.2

Parameters key — sample_index (tuple of int) or SampleId for desired sample
Returns flag indicating that the cardinality is correct
Return type bool

Raises FastrCardinalityError —if the Input/Output has an incorrect cardinality de-
scription.

datatype
The datatype of this Input/Output

description
The description object of this input/output

fullid
The fullid of the Input/Output, the fullid should be unnique and makes the object retrievable by the
network.

id
Id of the Input/Output

node
The Node to which this Input/Output belongs

numel
The number of elements in this Input/Output

required
Flag indicating that the Input/Output is required

size
The size of the Input/Output

class fastr.core.inputoutput .BaseOutput (node, description)
Bases: fastr.core.inputoutput.BaselnputOutput

Base class for all outputs.
__abstractmethods___ =frozenset([’_update’, ‘fullid’, ‘__getitem__’, ‘size’])

__init__ (node, description)
Instantiate a BaseOutput

Parameters

* node — the parent node the output belongs to.

* description —the ParameterDescription describing the output.
Returns created BaseOutput
Raises

* FastrTypeError —if description is not of class ParameterDescription

* FastrDataTypeNotAvailableError — if the DataType requested cannot be
found in the fastr.typelist

__module___ = ‘fastr.core.inputoutput’

automatic
Flag indicating that the Output is generated automatically without being specified on the command
line

class fastr.core.inputoutput . Input (node, description)
Bases: fastr.core.inputoutput.BaselInput

Class representing an input of a node. Such an input will be connected to the output of another node or the
output of an constant node to provide the input value.

__abstractmethods__ = frozenset([])

4.1. fastr Package 99

https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

__eq__ (other)
Compare two Input instances with each other. This function ignores the parent node and update status,
but tests rest of the dict for equality.

Parameters other (Input) — the other instances to compare to
Returns True if equal, False otherwise
Return type bool

__getitem__ (key)
Retrieve an item from this Input.

Parameters key (str, SampleId or tuple)— the key of the requested item, can be a key str,
sample index tuple or a SampleId

Returns the return value depends on the requested key. If the key was an int the correspond-
ing SubInput will be returned. If the key was a SampleId or sample index tuple, the
corresponding SampleItem will be returned.

Return type SampleItemor SubInput

Raises
e FastrTypeError —if key is not of a valid type
* FastrKeyError — if the key is not found

__getstate_ ()
Retrieve the state of the Input

Returns the state of the object
Rtype dict

__init__ (node, description)
Instantiate an input.

Parameters
* node (Node) — the parent node of this input.

* description (ParameterDescription) — the ParameterDescription of the
input.

Returns the created Input
__module___ = ‘fastr.core.inputoutput’

__setitem__ (key, value)
Create a link between a SubInput of this Inputs and an Output/Constant

Parameters
* key (int, str)-thekey of the Sublnput

* value (BaseOutput, Ilist, tuple, dict, OrderedDict) — the target
to link, can be an output or a value to create a constant for

Raises FastrTypeError —if key is not of a valid type

__setstate__ (state)
Set the state of the Input by the given state.

Parameters state (dict) - The state to populate the object with
Returns None

__str__ ()
Get a string version for the Input

Returns the string version

100 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

Return type str

append (value)
When you want to append a link to an Input, you can use the append property. This will automatically
create a new Sublnput to link to.

example:

>>> link = node2['input'].append(nodel['output'])

will create a new SublInput in node2[’input’] and link to that.

cardinality (key=None, job_data=None)
Cardinality for an Input is the sum the cardinalities of the SubInputs, unless defined otherwise.

Parameters key (tuple of int or SampleId) — key for a specific sample, can be sample
index or id

Returns the cardinality
Return type int, sympy.Symbol, or None

datatype
The datatype of this Input

dimnames
The list names of the dimensions in this Input. This will be a list of str.

fullid
The full defining ID for the Input

get_sourced_nodes ()
Get a list of all Node s connected as sources to this Input

Returns list of all connected Nodes
Return type list

get_sourced_outputs ()
Get a list of all Outputs connected as sources to this Input

Returns tuple of all connected Outputs
Return type tuple

get_subinput (key)
Get arequested SubInput

Parameters key (int) —the index of the SubTnput to retrieve
Returns requested SubInput

index (value)
Find index of a Sublnput

Parameters value (SubInput)—the SubInput to find the index of
Returns key
Return type int, str

input_group
The id of the Tnput Group this Input belongs to.

insert (index)
Insert a new Sublnput at index in the sources list

Parameters key (int) — positive integer for position in _source list to insert to
Returns newly inserted SubInput

Return type SubInput

41.

fastr Package 101

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

FASTR Documentation, Release 1.1.2

itersubinputs ()
Iterate over the SubTnputs in this Input.

Returns iterator yielding SubInput

example:

>>> for subinput in input_a.itersubinputs() :
print subinput

num_subinput
The number of Sublnputs in this Input

prepare (sample_size=None)
This function makes sure the SampleIdList has the correct size.

Parameters sample_size (tuple of int) — the required size of the
SampleIdList. If no sizeis given, self.size will be used by default.

remove (value)
Remove a Sublnput from the SubInputs list based on the connected Link.

Parameters value (SubInput, <fastr.core.inputoutput.Sublnput>‘) —the SubInput to
removed from this Input

set_subinput (key, value)
Set a specified SubInput.

Parameters
* key (1nt) — positive integer for position in _source list
* value —new SubInput to assign to the selected location

size
The size of the sample collections that can accessed via this Input.

source
The mapping of SubInput s that are connected and have more than 0 elements.

class fastr.core.inputoutput .Output (node, description)
Bases: fastr.core.inputoutput.BaseOutput

Class representing an output of a node. It holds the output values of the tool ran. Output fields can be
connected to inputs of other nodes.

__abstractmethods__ = frozenset([])

__eq__ (other)
Compare two Output instances with each other. This function ignores the parent node, listeners and
update status, but tests rest of the dict for equality.

Parameters other (Output) — the other instances to compare to
Returns True if equal, False otherwise
Return type bool

__getitem _ (key)
Retrieve an item from this Output. The returned value depends on what type of key used:

*Retrieving data using index tuple: [index_tuple]
*Retrieving data sample_id str: [Sampleld]
*Retrieving a list of data using Sampleld list: [sample_idl1, ..., sample_idN]

*Retrieving a SubOutput using an int or slice: [n] or [n:m]

102 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

Parameters key (int, slice, SampleId or tuple) — the key of the requested item, can be a
number, slice, sample index tuple or a SampleId

Returns the return value depends on the requested key. If the key was an int or slice the
corresponding SubOutput will be returned (and created if needed). If the key was a
SampleId or sample index tuple, the corresponding SampleItem will be returned. If
the key was a list of SampleId atuple of SampleItem will be returned.

Return type SubInput or SampleItem or list of SampleItem
Raises
* FastrTypeError —if key is not of a valid type
* FastrKeyError — if the parent Node has not been executed
__getstate__ ()
Retrieve the state of the Output
Returns the state of the object
Rtype dict

__init__ (node, description)
Instantiate an Output

Parameters

* node - the parent node the output belongs to.

* description —the ParameterDescription describing the output.
Returns created Output
Raises

* FastrTypeError — if description is not of class ParameterDescription

e FastrDataTypeNotAvailableError — if the DataType requested cannot be
found in the fastr.typelist

__module___ = ‘fastr.core.inputoutput’

__setitem__ (key, value)
Store an item in the Output

Parameters
* key (tuple of int or SampleId) —key of the value to store
* value - the value to store

Returns None

Raises FastrTypeError —if key is not of correct type

__ setstate__ (state)
Set the state of the Output by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

__str__ ()
Get a string version for the Output

Returns the string version
Return type str

blocking
Flag indicating that this Output will cause blocking in the execution

41.

fastr Package 103

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

cardinality (key=None, job_data=None)
Cardinality of this Output, may depend on the inputs of the parent Node.

Parameters key (tuple of int or SampleId) — key for a specific sample, can be sample
index or id

Returns the cardinality

Return type int, sympy.Symbol, or None

Raises
* FastrCardinalityError — if cardinality references an invalid Tnput
* FastrTypeError — if the referenced cardinality values type cannot be case to int
* FastrValueError — if the referenced cardinality value cannot be case to int

datatype
The datatype of this Output

dimnames
The list names of the dimensions in this Output. This will be a list of str.

fullid
The full defining ID for the Output

iterconvergingindices (collapse_dims)
Iterate over all data, but collapse certain dimension to create lists of data.

Parameters collapse_dims (iterable of int)-dimension to collapse
Returns iterator Samplelndex (possibly containing slices)

listeners
The list of Links connected to this Output.

ndims
The number of dimensions in this Output

preferred_types
The list of preferred DataTypes for this Output.

prepare ()
This function makes sure that a value storage will be created

resulting datatype
The DataType that will the results of this Output will have.

samples
The SampleCollection of the samples in this Output. None if the Node has not yet been executed.
Otherwise a SampleCollection.

size
The sample size of the Output

valid
Check if the output is valid, i.e. has a valid cardinality

class fastr.core.inputoutput .SourceOutput (node, description)
Bases: fastr.core.inputoutput.Output

Output for a SourceNode, this type of Output determines the cardinality in a different way than a normal

Node.
__abstractmethods__ = frozenset([])
__getitem__ (item)

Retrieve an item from this Output. The returned value depends on what type of key used:

*Retrieving data using index tuple: [index_tuple]

104 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None

FASTR Documentation, Release 1.1.2

*Retrieving data sample_id str: [Sampleld]
*Retrieving a list of data using Sampleld list: [sample_id]1, ..., sample_idN]
*Retrieving a SubOutput using an int or slice: [n] or [n:m]
Parameters key (int, slice, SampleId or tuple) — the key of the requested item, can be a
number, slice, sample index tuple or a SampleId

Returns the return value depends on the requested key. If the key was an int or slice the
corresponding SubOutput will be returned (and created if needed). If the key was a
SampleId or sample index tuple, the corresponding SampleItem will be returned. If
the key was a list of SampleId atuple of SampleItem will be returned.

Return type SubInput or SampleItem or list of SampleItem
Raises
e FastrTypeError —if key is not of a valid type
* FastrKeyError — if the parent Node has not been executed
__init__ (node, description)
Instantiate a FlowOutput
Parameters
* node - the parent node the output belongs to.
* description —the ParameterDescription describing the output.
Returns created FlowOutput
Raises
* FastrTypeError —if description is not of class ParameterDescription

* FastrDataTypeNotAvailableError — if the DataType requested cannot be
found in the fastr.typelist

__module___ = ‘fastr.core.inputoutput’

__setitem__ (key, value)
Store an item in the Output

Parameters
* key (tuple of int or SampleId) — key of the value to store
* value - the value to store

Returns None

Raises FastrTypeError —if key is not of correct type

cardinality (key=None, job_data=None)
Cardinality of this SourceOutput, may depend on the inputs of the parent Node.

Parameters key (tuple of int or SampleId) — key for a specific sample, can be sample
index or id

Returns the cardinality
Return type int, sympy.Symbol, or None

linearized
A linearized version of the sample data, this is lazily cached linearized version of the underlying
SampleCollection.

ndims
The number of dimensions in this SourceOutput

. fastr Package 105

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None

FASTR Documentation, Release 1.1.2

size
The sample size of the SourceOutput

class fastr.core.inputoutput.SubInput (input_)
Bases: fastr.core.inputoutput.BaseInput

This class is used by Tnput to allow for multiple links to an Tnput. The Sublnput class can hold only a
single Link to a (Sub)Output, but behaves very similar to an Tnput otherwise.

__abstractmethods__ =frozenset([])

__eq__ (other)
Compare two Sublnput instances with each other. This function ignores the parent, node, source and
update status, but tests rest of the dict for equality.

Parameters other (SubInput) — the other instances to compare to
Returns True if equal, False otherwise

__getitem__ (key)
Retrieve an item from this SublInput.

Parameters key (int, SampleId or SampleIndex) — the key of the requested item, can
be a number, sample index tuple or a SampleId

Returns the return value depends on the requested key. If the key was an int the correspond-
ing SubInput will be returned. If the key was a SampleId or sample index tuple, the
corresponding SampleItem will be returned.

Return type SampleItemor SubInput

Raises FastrTypeError —if key is not of a valid type

Note: As a Sublnput has only one Sublnput, only requesting int key O or -1 is allowed, and it will
return self

__getstate__ ()
Retrieve the state of the SubInput

Returns the state of the object
Rtype dict

__dinit__ (input)
Instantiate an SubInput.

Parameters input (Input) — the parent of this SubInput.
Returns the created Sublnput
__module___ = ‘fastr.core.inputoutput’

__ setstate__ (state)
Set the state of the Sublnput by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

__str__ ()
Get a string version for the SubInput

Returns the string version
Return type str

cardinality (key=None, job_data=None)
Get the cardinality for this SubInput. The cardinality for a SubInputs is defined by the incoming link.

106 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Parameters key (SampleIndex or SampleId)— key for a specific sample, can be sam-
ple index or id

Returns the cardinality
Return type int, sympy.Symbol, or None
description

dimnames
List of dimension names for this SubInput

fullid
The full defining ID for the SubInput

get_sourced_nodes ()
Get a list of all Node s connected as sources to this SubInput

Returns list of all connected Nodes
Return type list

get_sourced_outputs ()
Get a list of all Outputs connected as sources to this SubInput

Returns list of all connected Outputs
Return type list

input_group
The id of the Tnput Group this Sublnputs parent belongs to.

iteritems ()
Iterate over the SampleItems that are in the SubInput.

Returns iterator yielding SampleItem objects

itersubinputs ()
Iterate over Sublnputs (for a SubInput it will yield self and stop iterating after that)

Returns iterator yielding SubInput

example:

>>> for subinput in input_a.itersubinputs/():
print subinput

node
The Node to which this SubInputs parent belongs

num_subinput
The number of Sublnputs in this Sublnput, this is always 1.

remove (value)
Remove a Sublnput from parent Input.

Parameters value (SubInput)—the SubInput to removed from this Input

size
The sample size of the SubInput

source
A list with the source Link. The list is to be compatible with Tnput

source_output
The Output linked to this Sublnput

class fastr.core.inputoutput . SubOutput (output, index)
Bases: fastr.core.inputoutput.Output

The SubOutput is an Output that represents a slice of another Output.

4.1. fastr Package 107

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/functions.html#list

FASTR Documentation, Release 1.1.2

__abstractmethods__ = frozenset([])

__eq__ (other)
Compare two SubOutput instances with each other. This function ignores the parent, node and update
status, but tests rest of the dict for equality. equality

Parameters other (SubOutput) — the other instances to compare to
Returns True if equal, False otherwise
Return type bool

__getitem__ (key)
Retrieve an item from this SubOutput. The returned value depends on what type of key used:

*Retrieving data using index tuple: [index_tuple]

*Retrieving data sample_id str: [Sampleld]

*Retrieving a list of data using Sampleld list: [sample_idl, ..., sample_idN]

*Retrieving a SubOutput using an int or slice: [n] or [n:m]

Parameters key (int, slice, SampleId or tuple) — the key of the requested item, can be a
number, slice, sample index tuple or a SampleId

Returns the return value depends on the requested key. If the key was an int or slice the
corresponding SubOutput will be returned (and created if needed). If the key was a
SampleId or sample index tuple, the corresponding SampleItem will be returned. If
the key was a list of SampleId a tuple of SampleItem will be returned.

Return type SubTInput or SampleItem or list of SampleItem
Raises FastrTypeError —if key is not of a valid type
__getstate__ ()
Retrieve the state of the SubOutput
Returns the state of the object
Rtype dict

__init__ (output, index)
Instantiate a SubOutput

Parameters
* output — the parent output the suboutput slices.
* index (int or slice)-the way to slice the parent output
Returns created SubOutput
Raises
* FastrTypeError — if the output argument is not an instance of Output
* FastrTypeError — if the index argument is not an int or slice

len_ ()
Return the length of the Output.

Note: In a SubOutput this is always 1.

__module___ = ‘fastr.core.inputoutput’

__setitem__ (key, value)
A function blocking the assignment operator. Values cannot be assigned to a SubOutput.

Raises FastrNotImplementedError — if called

108 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#slice

FASTR Documentation, Release 1.1.2

setstate__ (state)
Set the state of the SubOutput by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

__str__ ()
Get a string version for the SubOutput

Returns the string version
Return type str

cardinality (key=None, job_data=None)
Cardinality of this SubOutput depends on the parent Output and self. index

Parameters key (tuple of int or SampleId) — key for a specific sample, can be sample
index or id

Returns the cardinality

Return type int, sympy.Symbol, or None

Raises
* FastrCardinalityError — if cardinality references an invalid Tnput
* FastrTypeError — if the referenced cardinality values type cannot be case to int
* FastrValueError — if the referenced cardinality value cannot be case to int

datatype
The datatype of this SubOutput

fullid
The full defining ID for the SubOutput

indexrep
Simple representation of the index.

listeners
The list of Links connected to this Output.

node
The Node to which this SubOutput belongs

preferred_types
The list of preferred DataTypes for this SubOutput.

resulting datatype
The DataType that will the results of this SubOutput will have.

samples
The SampleCollection for this SubOutput

interface Module

A module that describes the interface of a Tool. It specifies how a set of input values will be translated to
commands to be executed. This creates a generic interface to different ways of executing underlying soft-
ware.

class fastr.core.interface.InputSpec
Bases: fastr.core.interface. InputSpec

__dict___ =dict_proxy({‘__dict__’: <attribute ‘__dict__’ of ‘InputSpec’ objects>, ‘__module__’: ‘fastr.core.interfac

_ _module__ = ‘fastr.core.interface’

4.1. fastr Package 109

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None

FASTR Documentation, Release 1.1.2

static __new___ (id_, cardinality, datatype, required=False, description=""*, default=None, hid-
den=Fualse)

fastr.core.interface.InputSpecBase
alias of TnputSpec

class fastr.core.interface.Interface
Bases: fastr.core.baseplugin.Plugin, fastr.core.serializable.Serializable
Abstract base class of all Interfaces. Defines the minimal requirements for all Interface implementations.
2

__abstractmethods___ =frozenset([’inputs’, ‘execute’, ‘__setstate__’, ‘expanding’, ‘__getstate__’, ‘outputs’])

__getstate__ ()
Retrieve the state of the Interface

Returns the state of the object
Rtype dict

_ _metaclass_
alias of ABCMeta

__module___ = ‘fastr.core.interface’

__ setstate__ (state)
Set the state of the Interface

execute (target, payload)
Execute the interface given the a target and payload. The payload should have the form {‘input’:
{‘input_id_a’: (value, value), ‘input_id_b’: (value, value)}, ‘output’: {‘output_id_a’: (value, value),
‘output_id_b’: (value, value)}}

Parameters

* target — the target to call

* payload - the payload to use
Returns the result of the execution
Return type (tuple of) InterfaceResult

expanding
Indicates whether or not this Interface will result in multiple samples per run. If the flow is unaffected,
this will be zero, if it is nonzero it means that number of dimension will be added to the sample array.

inputs
OrderedDict of Inputs connected to the Interface. The format should be {input_id: InputSpec}.

outputs
OrderedDict of Output connected to the Interface. The format should be {output_id: OutputSpec}.

classmethod test ()
Test the plugin, interfaces do not need to be tested on import

class fastr.core.interface.InterfacePluginManager
Bases: fastr.core.pluginmanager.PluginSubManager

Container holding all the CollectorPlugins
__ abstractmethods__ = frozenset([])

__init__ ()
Create the Coll :param path: :param recursive: :return:

_ _module__ = ‘fastr.core.interface’

plugin_class
The class of the Plugins in the collection

110 Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

class fastr.core.interface.InterfaceResult (result_data, log_data, payload, sam-

ple_index=None, sample_id=None)
Bases: object

The class in which Interfaces should wrap their results to be picked up by fastr

__dict___ =dict_proxy({‘__dict__’: <attribute ‘__dict__’ of ‘InterfaceResult’ objects>, ‘__module__’: ‘fastr.core.int
__init__ (result_data, log_data, payload, sample_index=None, sample_id=None)

_ _module__ = ‘fastr.core.interface’

___weakref
list of weak references to the object (if defined)

class fastr.core.interface.OutputSpec
Bases: fastr.core.interface.OutputSpec

__dict__ =dict_proxy({‘__dict__’: <attribute ‘__dict__’ of ‘OutputSpec’ objects>, ¢__module__’: ‘fastr.core.interf:
_ _module__ = ‘fastr.core.interface’
static __new___ (id_, cardinality, datatype, automatic=True, required=False, description="", hid-

den=Fulse)

fastr.core.interface.OutputSpecBase
alias of OutputSpec

ioplugin Module

This module contains the manager class for IOPlugins and the base class for all IOPlugins

class fastr.core.ioplugin.IOPlugin
Bases: fastr.core.baseplugin.Plugin

IOPlugins are used for data import and export for the sources and sinks. The main use of the
IOPlugins is during execution (see Execution). The IOPlugins can be accessed via fastr.
ioplugins, but generally there should be no need for direct interaction with these objects. The use
of is mainly via the URL used to specify source and sink data.

__abstractmethods__ = frozenset([’scheme’])

__init__ ()
Initialization for the IOPlugin

Returns newly created IOPlugin

_ _metaclass_
alias of ABCMeta

__module___ = ‘fastr.core.ioplugin’

cleanup ()

(abstract) Clean up the IOPlugin. This is to do things like closing files or connections. Will be
called when the plugin is no longer required.

expand_url (url)
(abstract) Expand an URL. This allows a source to collect multiple samples from a single url.
The URL will have a wildcard or point to something with info and multiple urls will be returned.

Parameters url (st r) —url to expand
Returns the resulting url(s), a tuple if multiple, otherwise a str
Return type str or tuple of str

fetch_url (inurl, outfile)
(abstract) Fetch a file from an external data source.

Parameters

4.1. fastr Package 111

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

e inurl — url to the item in the data store
* outpath — path where to store the fetch data locally

fetch_value (inurl)
(abstract) Fetch a value from an external data source.

Parameters inurl — the url of the value to retrieve
Returns the fetched value

static isurl (string)
Test if given string is an url.

Parameters string (str)— string to test
Returns True if the string is an url, False otherwise
Return type bool

path_to_url (path, mountpoint=None)
(abstract) Construct an url from a given mount point and a relative path to the mount point.

Parameters
e path (str) — the path to determine the url for

* mountpoint (str or None) - the mount point to use, will be automatically de-
tected if None is given

Returns url matching the path
Return type str

static print_result (result)
Print the result of the IOPIugin to stdout to be picked up by the tool

Parameters result — value to print as a result
Returns None

pull_source_data (inurl, outdir, sample_id, datatype=None)
Transfer the source data from inurl to be available in outdir.

Parameters
e inurl (str) - the input url to fetch data from
* outdir (str) — the directory to write the data to

* datatype (DataType) — the datatype of the data, used for determining the total
contents of the transfer

Returns None

push_sink_data (inpath, outurl, datatype=None)
Write out the sink data from the inpath to the outurl.

Parameters
e inpath (st r) — the path of the data to be pushed
e outurl (str) - the url to write the data to

* datatype (DataType) — the datatype of the data, used for determining the total
contents of the transfer

Returns None

put_url (inpath, outurl)
(abstract) Put the files to the external data store.

Parameters

112 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

* inpath — path to the local data
e outurl - url to where to store the data in the external data store.

put_value (value, outurl)
(abstract) Put the files to the external data store.

Parameters
¢ value — the value to store
e outurl — url to where to store the data in the external data store.

scheme
(abstract) This abstract property is to be overwritten by a subclass to indicate the url scheme
associated with the IOPlugin.

setup (*args, **kwargs)
(abstract) Setup before data transfer. This can be any function that needs to be used to prepare
the plugin for data transfer.

url_to_path (url)
(abstract) Get the path to a file from a url.

Parameters url (st r) — the url to retrieve the path for
Returns the corresponding path
Return type str

class fastr.core.ioplugin.IOPluginManager
Bases: fastr.core.pluginmanager.PluginSubManager

A mapping containing the IOPlugins known to this system
__ abstractmethods_ = frozenset([])

__init__ ()
Create the IOPluginManager and populate it.

Returns newly created IOPluginManager
__iter_ ()
__keytransform__ (key)
__module___ = ‘fastr.core.ioplugin’

cleanup ()
Cleanup all plugins, this closes files, connections and other things that could be left dangling otherwise.

static create_ioplugin_tool ()
Create the tools which handles sinks and sources. The command of this tool is the main of
core.ioplugin.

expand_url (url)
Expand the url by filling the wildcards. This function checks the url scheme and uses the expand
function of the correct IOPlugin.

Parameters url (str)—url to expand
Returns list of urls
Return type list of str

plugin_class
The PluginClass of the items of the BasePluginManager

populate ()
Populate the IOPIugins manager. After the default directory scan, add the vfs IOPlugin and create the
Tools for the IOPlugins

4.1. fastr Package 113

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

pull_source_data (url, outdir, sample_id, datatype=None)
Retrieve data from an external source. This function checks the url scheme and selects the correct
IOPlugin to retrieve the data.

Parameters
e url —url to pull
e outdir (str) - the directory to write the data to

* datatype (DataType) — the datatype of the data, used for determining the total
contents of the transfer

Returns None

put_url (inpath, outurl)
Put the files to the external data store.

Parameters
e inpath — path to the local data
e outurl — url to where to store the data in the external data store.

static register_url_scheme (scheme)
Register a custom scheme to behave http like. This is needed to parse all things properly with urlparse.

Parameters scheme — the scheme to register

url_to_path (url)
Retrieve the path for a given url

Parameters url (st r) — the url to parse
Returns the path corresponding to the input url
Return type str

fastr.core.ioplugin.main ()
The main entry point for command line access to the IOPlugin

1link Module

The link module contain the Link class. This class represents the links in a network. These links lead from an
output (BaseOutput) to an input (Baselnput) and indicate the desired data flow. Links are smart objects, in the
sense that when you set their start or end point, they register themselves with the Input and Output. They do all
the book keeping, so as long as you only set the source and target of the Link, the link should be valid.

Warning: Don’t mess with the Link, Input and Output internals from other places. There will be a huge
chances of breaking the network functionality!

class fastr.core.link.Link (source, target, parent=None, id_=None, collapse=None, ex-

pand=None)
Bases: fastr.core.updateable.Updateable, fastr.core.serializable.

Serializable
Class for linking outputs (BaseOutput) to inputs (BaseInput)

Examples:

>>> import fastr
>>> network = fastr.Network ()
>>> 1linkl = network.create_link(nl.ouputs['outl'], n2.inputs['in2'])

link2 = Link ()

114 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

link2.source = nl.ouputs['outl']
link2.target = n2.inputs['in2']

__abstractmethods__ = frozenset([])
__dataschemafile__ = ‘Link.schema.json’
__eq__ (other)

Test for equality between two Links
Parameters other (Link) — object to test against
Returns True for equality, False otherwise
Return type bool

__getitem__ (index)
Get a an item for this Link. The item will be retrieved from the connected output, but a diverging or
converging flow can change the number of samples/cardinality.

Parameters index (SampleIndex) —index of the item to retrieve
Returns the requested item
Return type SampleItem

Raises FastrIndexError — if the index length does not match the number dimensions
in the source data (after collapsing/expanding)

__getstate__ ()
Retrieve the state of the Link

Returns the state of the object
Rtype dict

__init__ (source, target, parent=None, id_=None, collapse=None, expand=None)
Create a new Link in a Network.

Parameters
* source (BaseOutput) — the source output
* target (BaseInput) — the target input

e parent (Network or None) — the parent network, if None is given the
fastr.current_network is assumed to be the parent

e id(str or None)-theid of the link, if no id_ is given, the id will be in the form
of “link_{:d}”

* collapse (int, str, or tuple of int/str) — the dimensions that the
link has to collapse on

* expand (bool) — Does this link need to expand the cardinality into a new sample
dimension

Returns newly created Link
Raises
* FastrValueError — if parent is not given and fastr.current_network is not set
* FastrValueError — if the source output is not in the same network as the Link
* FastrValueError — if the target input is not in the same network as the Link
__module__ = ‘fastr.core.link’

__repr_ ()
Get a string representation for the Link

41.

fastr Package 115

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

FASTR Documentation, Release 1.1.2

Returns the string representation
Return type str

__setstate__ (state)
Set the state of the Link by the given state.

Parameters state (dict)— The state to populate the object with
Returns None
Raises FastrValueError — if the parent network and fastr.current_network are not set

cardinality (index=None)
Cardinality for a Link is given by source Output and the collapse/expand settings

Parameters key (SampleIndex) — key for a specific sample (can be only a sample in-
dex!)

Returns the cardinality
Return type int, sympy.Symbol

Raises FastrIndexError —if the index length does not match the number of dimension
in the data

collapse
The converging dimensions of this link. Collapsing changes some dimensions of sample lists into
cardinality, reshaping the data.

Collapse can be set to a tuple or an int/str, in which case it will be automatically wrapped in a tuple.
The int will be seen as indices of the dimensions to collapse. The str will be seen as the name of the
dimensions over which to collapse.

Raises FastrTypeError —if assigning a collapse value of a wrong type

collapse_indexes
The converging dimensions of this link as integers. Dimension names are replaces with the corre-
sponding int.

Collapsing changes some dimensions of sample lists into cardinality, reshaping the data

classmethod createobj (state, network=None)
Create object function for Link

Parameters
e cls — The class to create
* state - The state to use to create the Link
* network — the parent Network

Returns newly created Link

destroy ()
The destroy function of a link removes all default references to a link. This means the references in
the network, input and output connected to this link. If there is no references in other places in the
code, it will destroy the link (reference count dropping to zero).

This function is called when a source for an input is set to another value and the links becomes dis-
connected. This makes sure there is no dangling links.

dimnames
The dimension names for this Link. The dimension names depend on the connected source output and
the collapse/expand.

expand
Flag indicating that the link will expand the cardininality into a new sample dimension to be created.

116 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int

FASTR Documentation, Release 1.1.2

fullid
The full defining ID for the Input

iteritems ()
Iterate over all SampleItems available in this Link. This function queries the connected source
output and processes the collapsing and expanding.

Returns generator function yielding SampleItems

parent
The Network to which this Link belongs.

size
The size of the data delivered by the link. This can be different from the source size because the link
can make data collapse or expand.

source
The source BaseOutput of the Link. Setting the source will automatically register the Link with the
source BaseOutput. Updating source will also make sure the Link is unregistered with the previous
source.

Raises FastrTypeError —if assigning a non BaseOutput
status

target
The target Base Input of the Link. Setting the target will automatically register the Link with the
target Baselnput. Updating target will also make sure the Link is unregistered with the previous target.

Raises FastrTypeError —if assigning a non BaseInput

network Module

Network module containing Network facilitators and analysers.

class fastr.core.network.Network (id_=’unnamed_network’, version=None)

Bases: fastr.core.serializable.Serializable

The Network class represents a workflow. This includes all Nodes (including ConstantNodes, SourceNodes
and Sinks) and Links.

NETWORK_DUMP_FILE_NAME = ‘_ fastr_network__.json’
SOURCE_DUMP_FILE_ NAME = ‘__source_data__.pickle.gz’
__dataschemafile__ = ‘Network.schema.json’

__eq__ (other)
Compare two Networks and see if they are equal.

Parameters other (Network) —
Returns flag indicating that the Networks are the same
Return type bool

__getitem__ (item)
Get an item by its fullid. The fullid can point to a link, node, input, output or even subinput/suboutput.

Parameters item (str, unicode) — fullid of the item to retrieve
Returns the requested item

__getstate__ ()
Retrieve the state of the Network

Returns the state of the object
Rtype dict

41.

fastr Package 117

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#unicode

FASTR Documentation, Release 1.1.2

__init__ (id_=’unnamed_network’, version=None)
Create a new, empty Network

Parameters name (st r) — name of the Network

Returns newly created Network

Raises OSError — if the tmp mount in the config is not a writable directory
__module__ = ‘fastr.core.network’

__ne__ (other)
Tests for non-equality, this is the negated version __eq__

__repr__ ()

__ setstate__ (state)
Set the state of the Network by the given state. This completely overwrites the old state!

Parameters state (dict)— The state to populate the object with
Returns None
abort ()

add_1link (link)
Add a Link to the Network. Make sure the link is in the link list and the link parent is set to this
Network

Parameters 1link (Link) - link to add
Raises
* FastrTypeError —if link is incorrectly typed
* FastrNetworkMismatchError —if the link already belongs to another Network

add_node (node)
Add a Node to the Network. Make sure the node is in the node list and the node parent is set to this
Network

Parameters node (Node) —node to add
Raises FastrTypeError —if node is incorrectly typed

add_stepid (stepid, node)
Add a Node to a specific step id

Parameters
* stepid (str) — the stepid that the node will be added to
* node (Node) — the node to add to the stepid

check_id (id_)
Check if an id for an object is valid and unused in the Network. The method will always returns True
if it does not raise an exception.

Parameters id (st r) - the id to check

Returns True

Raises
* FastrValueError — if the id is not correctly formatted
e FastrValueError — if the id is already in use

create_constant (datatype, data, id_=None, stepid=None, nodegroup=None, source-
group=None)
Create a ConstantNode in this Network. The Node will be automatically added to the Network.

Parameters

118 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

* datatype (BaseDataType) — The DataType of the constant node

e data (datatype or list of datatype) - The data to hold in the constant
node

e id (str) - The id of the constant node to be created
* stepid (str) - The stepid to add the created constant node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

Returns the newly created constant node
Return type ConstantNode

create_link (source, target, id_=None, collapse=None, expand=None)
Create a link between two Nodes and add it to the current Network.

Parameters
* source (BaseOutput) — the output that is the source of the link
* target (BaseInput) — the input that is the target of the link
e id (str) - the id of the link
Returns the created link
Type Link
create_macro (network, id_=None)

create_node (f00l, id_=None, stepid=None, cores=None, memory=None, walltime=None, node-
group=None)
Create a Node in this Network. The Node will be automatically added to the Network.

Parameters
¢ tool (Tool) - The Tool to base the Node on
¢ id (st r) - The id of the node to be created
* stepid (str)— The stepid to add the created node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

Returns the newly created node
Return type Node
create_reference (source_data, output_directory)

create_sink (datatype, id_=None, stepid=None)
Create a SinkNode in this Network. The Node will be automatically added to the Network.

Parameters
* datatype (BaseDataType)— The DataType of the sink node
¢ id (str) - The id of the sink node to be created
* stepid (str)— The stepid to add the created sink node to
Returns the newly created sink node
Return type SinkNode

create_source (datatype, id_=None, stepid=None, nodegroup=None, sourcegroup=None)
Create a SourceNode in this Network. The Node will be automatically added to the Network.

Parameters

* datatype (BaseDataType) — The DataType of the source source_node

41.

fastr Package 119

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

e id (str) - The id of the source source_node to be created
* stepid (str)— The stepid to add the created source source_node to

* nodegroup (str) — The group the node belongs to, this can be important for
FlowNodes and such, as they will have matching dimension names.

* sourcegroup (str) — DEPRECATED! The nodegroup this SourceNode will be
added to

Returns the newly created source source_node
Return type SourceNode

draw_network (name="network_layout’, img_format="svg’, draw_dimension="False)
Output a dot file and try to convert it to an image file.

Parameters img_ format (st r) — extension of the image format to convert to
Returns path of the image created or None if failed
Return type str or None

execute (sourcedata, sinkdata, execution_plugin=None, tmpdir=None, cluster_queue=None)
Execute the Network with the given data. This will analyze the Network, create jobs and send them to
the execution backend of the system.

Parameters
* sourcedata (dict) — dictionary containing all data for the sources
* sinkdata (dict) - dictionary containing directives for the sinks

* execution_plugin (st r)—the execution plugin to use (None will use the config
value)

Raises
* FastrKeyError —if a source has not corresponding key in sourcedata
* FastrKeyError — if a sink has not corresponding key in sinkdata

fullid
The fullid of the Network

id
The id of the Network. This is a read only property.
is_valid()

job_finished (job, execution_interface)
Call-back handler for when a job is finished. Will collect the results and handle blocking jobs. This
function is automatically called when the execution plugin finished a job.

Parameters job (Job) — the job that finished

remove (value)
Remove an item from the Network.

Parameters value (Node or Link) — the item to remove

test (reference_data_dir, source_data=None)
Execute the network with the source data specified and test the results against the refence data. This
effectively tests the network execution.

Parameters

* reference_data_dir (str)— The path or vfs url of reference data to compare
with

* source_data (dict)— The source data to use

120 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

networkmanager Module

This module contains the tool manager class

class fastr.core.networkmanager .NetworkManager (path)
Bases: fastr.core.objectmanager.ObjectManager

__abstractmethods_ = frozenset([])
__module___ = ‘fastr.core.networkmanager’
get_object_version (0bj)
object_class

fastr.core.networkmanager.networklist = NetworkManager add_ints v0.0 : /home/docs/checkouts/readthedocs.
The fastr networklist

node Module

A module to maintain a network node.
Exported classes:

Node — A class encapsulating a tool. ConstantNode — A node encapsulating an Output to set scalar values.
SourceNode — A class providing a handle to a file.

class fastr.core.node.AdvancedFlowNode (tool, id_=None, parent=None, cores=None, mem-
ory=None, walltime=None)
Bases: fastr.core.node.FlowNode

__abstractmethods__ = frozenset([])
__module__ = ‘fastr.core.node’
execute ()

Execute the node and create the jobs that need to run
Returns list of jobs to run
Return type list of Jobs
set_result (job)

class fastr.core.node.ConstantNode (datatype, data, id_=None)
Bases: fastr.core.node.SourceNode

Class encapsulating one output for which a value can be set. For example used to set a scalar value to the
input of a node.

__abstractmethods__ = frozenset([])
__dataschemafile__ = ‘ConstantNode.schema.json’
__getstate__ ()

Retrieve the state of the ConstantNode
Returns the state of the object
Rtype dict

__init__ (datatype, data, id_=None)
Instantiation of the ConstantNode.

Parameters
* datatype — The datatype of the output.

* data - the prefilled data to use.

4.1. fastr Package 121

FASTR Documentation, Release 1.1.2

e id - The url pattern.

This class should never be instantiated directly (unless you know what you are doing). Instead create
a constant using the network class like shown in the usage example below.

usage example:

>>> import fastr

>>> network = fastr.Network ()
>>> source = network.create_source (datatype=fastr.typelist['ITKImageFile'],
— 1d_='sourceN"')

or alternatively create a constant node by assigning data to an item in an InputDict:

>>> node_a.inputs['in'] = ['some', 'data'l]

which automatically creates and links a ConstantNode to the specified Input
_ _module___ = ‘fastr.core.node’

__ setstate__ (state)
Set the state of the ConstantNode by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

data
The data stored in this constant node

execute ()
Execute the constant node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs

set_data (data=None, ids=None)
Set the data of this constant node in the correct way. This is mainly for compatibility with the parent
class SourceNode

Parameters
e data (dict or list of urls)- the datato use
e ids —if datais alist, a list of accompanying ids

class fastr.core.node.DefaultInputGroupCombiner (input_groups)
Bases: object

__dict__ =dict_proxy({‘__module__’: ‘fastr.core.node’, ‘merge_sample_jobs’: <function merge_sample_jobs>, ¢__
__dinit__ (input_groups)
__iter_ ()

_ _module___ = ‘fastr.core.node’

__weakref
list of weak references to the object (if defined)

dimnames
iter_input_groups ()

merge (list_of _items)
Given a list of items for each input group, it returns the combined list of items.

Parameters 1list_of_items (Iist)— items to combine

Returns combined list

122 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#list

FASTR Documentation, Release 1.1.2

merge_payloads (sample_payloads)
merge_sample_data (list_of _sample_data)
merge_sample_id (list_of sample_ids)
merge_sample_index (list_of_sample_indexes)
merge_sample_jobs (list_of _sample_jobs)
outputsize

unmerge (item)
Given a item it will recreate the seperate items, basically this is the inverse operation of merge. How-
ever, this create an OrderedDict so that specific input groups can be easily retrieved. To get a round
trip, the values of the OrderedDict should be taken:

>>> list_of_items = combiner.unmerge (item)
>>> item = combiner.merge (list_of_items.values())

Parameters item (1ist)— the item to unmerge
Returns items

Return type OrderedDict

update ()

class fastr.core.node.FlowNode (tool, id_=None, parent=None, cores=None, memory=None,

walltime=None)
Bases: fastr.core.node.Node

A Flow Node is a special subclass of Nodes in which the amount of samples can vary per Output. This
allows non-default data flows.

__ abstractmethods__ = frozenset([])

__init__ (tool, id_=None, parent=None, cores=None, memory=None, walltime=None)
Instantiate a flow node.

Parameters
¢ tool (Tool) - The tool to base the node on
e id (st r) - the id of the node
e parent (Network) — the parent network of the node
Returns the newly created FlowNode
__module___ = ‘fastr.core.node’

blocking
A FlowNode is (for the moment) always considered blocking.

Returns True

dimnames
Names of the dimensions in the Node output. These will be reflected in the SampleldList of this Node.

outputsize
Size of the outputs in this Node

set_result (job)
Incorporate result of a job into the FlowNode.

Parameters job (Type) — job of which the result to store

4.1. fastr Package 123

https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

class fastr.core.node.InputDict (*args, **kwds)
Bases: collections.OrderedDict

The container containing the Inputs of Node. Implements helper functions for the easy linking syntax.
__module__ = ‘fastr.core.node’

__setitem__ (key, value, dict_setitem=<slot wrapper ‘__setitem__" of ‘dict’ objects>)
Set an item in the input dictionary. The behaviour depends on the type of the value. Fora Base Input,
the input will simply be added to the list of inputs. For a BaseOutput, a link between the output
and input will be created.

Parameters
* key (str)—id of the input to assign/link
* value (BaseInput or BaseOutput) — either the input to add or the output to link
* dict_setitem - the setitem function to use for the underlying OrderedDict insert

class fastr.core.node.InputGroup (*args, **kwargs)
Bases: collections.OrderedDict

A class representing a group of inputs. Input groups allow the
__abstractmethods__ = frozenset([])

__delitem___ (*args, **kwargs)
od.__delitem__(y) <==> del od[y]

Note: This is a wrapped version of collections.__delitem__ which triggers an update of
the object after being called

__getitem__ (key)

__init__ (*args, **kwargs)
Create a new InputGroup representation

Parameters
* parent (Node) — the parent node
e id (str) —the id of the input group

Raises FastrTypeError —if parent is not a Node

Note: This is a wrapped version of fastr.core.node.__init___ which triggers an update of
the object after being called

__metaclass_
alias of UpdateableMeta

__module__ = ‘fastr.core.node’

__setitem__ (*args, **kwargs)
Assign an input to this input group.

Parameters
* key (str)—id of the input
* value (Input) — the input to assign

Raises FastrTypeError —if value of valid type

124 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/collections.html#collections.OrderedDict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/collections.html#collections.OrderedDict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Note: This is a wrapped version of fastr.core.node.__setitem__ which triggers an update
of the object after being called

__updatefunc__ ()
Update the InputGroup. Triggers when a change is made to the content of the InputGroup. Automati-
cally recalculates the size, primary Input etc.

__updatetriggers__ =[’__init_ ’,‘_ setitem__’, ‘_ delitem__’, ‘clear’, ‘pop’, ‘popitem’, ‘setdefault’, ‘update’]

clear () — None. Remove all items from od.

Note: This is a wrapped version of collections.clear which triggers an update of the object
after being called

dimnames
The names of the dimensions in this InputGroup

empty
Bool indicating that this InputGroup is empty (has no data connected)

classmethod £ind_source_index (target_size, target_dimnames, source_size,
source_dimnames, target_index)

iterinputvalues
Iterate over the item in this InputGroup

Returns iterator yielding SampleItems

parent
The parent node of this InputGroup

pop (k[, d]) — v, remove specified key and return the corresponding

value. If key is not found, d is returned if given, otherwise KeyError is raised.

Note: This is a wrapped version of collections.pop which triggers an update of the object after
being called

popitem () — (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false.

Note: This is a wrapped version of collections.popitem which triggers an update of the
object after being called

primary
The primary Input in this InputGroup. The primary Input is the Input that defines the size of this
InputGroup. In case of ties it will be the first in the tool definition.

setdefault (k[,d]) — od.get(k.d), also set od[k]=d if k not in od

Note: This is a wrapped version of collections.setdefault which triggers an update of the
object after being called

size
The sample size of this InputGroup

41.

fastr Package 125

FASTR Documentation, Release 1.1.2

classmethod solve_broadcast (farget_size, target_dimnames, source_size, source_dimnames,
target_index, nodegroups=None)

update ([E] **F) — None. Update D from mapping/iterable E and F.

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items():
D[k]=v

Note: This is a wrapped version of _abcoll.update which triggers an update of the object after
being called

class fastr.core.node.MacroNode (network, id_=None, parent=None, cores=None, mem-

ory=None, walltime=None)
Bases: fastr.core.node.Node

MacroNode encapsulates an entire network in a single node.
__abstractmethods__ =frozenset([])

__getstate__ ()
Retrieve the state of the MacroNode

Returns the state of the object
Rtype dict
__init__ (network, id_=None, parent=None, cores=None, memory=None, walltime=None)
Parameters network (Network) — network to create macronode for
__module___ = ‘fastr.core.node’
__setstate__ (state)
execute ()

class fastr.core.node.MergingInputGroupCombiner (input_groups, merge_dimension)
Bases: fastr.core.node.DefaultInputGroupCombiner

__init__ (input_groups, merge_dimension)
__module__ = ‘fastr.core.node’
iter_input_groups ()

merge (list_of _items)

unmerge (item)

update ()
class fastr.core.node.Node (tool, id_=None, parent=None, cores=None, memory=None, wall-
time=None)
Bases: fastr.core.updateable.Updateable, fastr.core.serializable.

Serializable

The class encapsulating a node in the network. The node is responsible for setting and checking inputs and
outputs based on the description provided by a tool instance.

__abstractmethods__ = frozenset([])
__dataschemafile___ = ‘Node.schema.json’
__eq__ (other)

Compare two Node instances with each other. This function ignores the parent and update status, but
tests rest of the dict for equality. equality

Parameters other (Node) — the other instances to compare to

126 Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

Returns True if equal, False otherwise

__getstate__ ()
Retrieve the state of the Node

Returns the state of the object
Rtype dict

__init__ (tool, id_=None, parent=None, cores=None, memory=None, walltime=None)
Instantiate a node.

Parameters
¢ tool (Tool) - The tool to base the node on
e id (st r)—the id of the node
* parent (Network) — the parent network of the node
* cores (int)—number of cores required for executing this Node

* memory (st r)—amount of memory required in the form d+[mMgG] where M is for
megabyte and G for gigabyte

e walltime (str) — amount of time required in second or in the form
HOURS:MINUTES:SECOND

Returns the newly created Node

_ _metaclass_
alias of ABCMeta

__module___ = ‘fastr.core.node’

__repr__ ()
Get a string representation for the Node

Returns the string representation
Return type str

__setstate__ (state)
Set the state of the Node by the given state.

Parameters state (dict)— The state to populate the object with
Returns None

_str__ ()
Get a string version for the Node

Returns the string version
Return type str

blocking
Indicate that the results of this Node cannot be determined without first executing the Node, causing a
blockage in the creation of jobs. A blocking Nodes causes the Chunk borders.

create_job (sample_id, sample_index, job_data, job_dependencies, jobid=None, out-
puturl=None, **kwargs)
Create a job based on the sample id, job data and job dependencies.

Parameters
* sample_id (SampleId) - the id of the corresponding sample
* job_data (dict) — dictionary containing all input data for the job
* job_dependencies - other jobs that need to finish before this job can run

Returns the created job

41.

fastr Package 127

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

Return type Job
classmethod createobj (state, network=None)

dimnames
Names of the dimensions in the Node output. These will be reflected in the SampleldList of this Node.

execute ()
Execute the node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs
find_source_index (target_index, target, source)

fullid
The full defining ID for the Node

get_sourced_nodes ()
A list of all Nodes connected as sources to this Node

Returns list of all nodes that are connected to an input of this node

id

The id of the Node
id_ = None

The Node id s a unique string identifying the Node
inputgroups

A list of inputgroups for this Node. An input group is InputGroup object filled according to the
Node

inputs = None
A list of inputs of this Node

listeners
All the listeners requesting output of this node, this means the listeners of all Outputs and SubOutputs

merge_dimensions

name
Name of the Tool the Node was based on. In case a Toolless Node was used the class name is given.

nodegroup

outputs = None
A list of outputs of this Node

outputsize
Size of the outputs in this Node

parent
The parent is the Network this Node is part of

prepare ()
Prepare the node for execution. It will create a SampleldList of the correct size and prepare the outputs.

required_cores
Number of cores required for the execution of this Node

required_memory
Amount of memory required for the execution of this Node. Follows the format d+[mMgG] so S00M
or 4g would be valid ways to specify 500 megabytes or 4 gigabyte of memory.

required_time
Amount of time required for the execution of this Node. Follows the format of a number of second or
H:M:S, with H the number of hours, M the number of minutes and S the number of seconds.

128

Chapter 4. FASTR Developer Module reference

FASTR Documentation, Release 1.1.2

set_result (job)
Incorporate result of a job into the Node.

Parameters job (Type) — job of which the result to store
status
tool

update_inputgroups ()
Update all input groups in this node

class fastr.core.node.OutputDict (*args, **kwds)
Bases: collections.OrderedDict

The container containing the Inputs of Node. Only checks if the inserted values are actually outputs.
__module__ = ‘fastr.core.node’

__setitem__ (key, value, dict_setitem=<slot wrapper ‘__setitem__’ of ‘dict’ objects>)
Set an output.

Parameters
* key (str) — the of the item to set
* value (BaseOutput) — the output to set
* dict_setitem - the setitem function to use for the underlying OrderedDict insert

class fastr.core.node.SinkNode (datatype, id_=None)
Bases: fastr.core.node.Node

Class which handles where the output goes. This can be any kind of file, e.g. image files, textfiles, config

files, etc.

__abstractmethods_ = frozenset([])
__dataschemafile__ = ‘SinkNode.schema.json’
__getstate__ ()

__init__ (datatype, id_=None)
Instantiation of the SourceNode.

Parameters
* datatype — The datatype of the output.
* id - the id of the node to create
Returns newly created sink node

usage example:

>>> import fastr

>>> network = fastr.Network ()

>>> sink = network.create_sink (datatype=fastr.typelist['ITKImageFile'], id_
—="'SinkN")

__module__ = ‘fastr.core.node’
__setstate__ (state)

create_job (sample_id, sample_index, job_data, job_dependencies)
Create a job for a sink based on the sample id, job data and job dependencies.

Parameters
* sample_id (SampleId) - the id of the corresponding sample

* job_data (dict)— dictionary containing all input data for the job

4.1. fastr Package 129

https://docs.python.org/2.7/library/collections.html#collections.OrderedDict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

* job_dependencies — other jobs that need to finish before this job can run
Returns the created job
Return type Job

datatype
The datatype of the data this sink can store.

execute ()
Execute the sink node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs

input
The default input of the sink Node

set_data (data)
Set the targets of this sink node.

Parameters data (dict or list of urls)— the targets rules for where to write the
data

The target rules can include a few fields that can be filled out:

field description
sample_id | the sample id of the sample written in string form
cardinality | the cardinality of the sample written

ext the extension of the datatype of the written data, including the .
network the id of the network the sink is part of

node the id of the node of the sink

timestamp | the iso formatted datetime the network execution started

uuid the uuid of the network run (generated using uuid.uuidl)

An example of a valid target could be:

>>> target = 'vfs://output_mnt/some/path/image_{sample_id}_{cardinality}
—{ext}'

class fastr.core.node.SourceNode (datatype, id_=None)
Bases: fastr.core.node.FlowNode

Class providing a connection to data resources. This can be any kind of file, stream, database, etc from
which data can be received.

__abstractmethods__ =frozenset([])
__dataschemafile__ = ‘SourceNode.schema.json’
__eq__ (other)

Compare two Node instances with each other. This function ignores the parent and update status, but
tests rest of the dict for equality. equality

Parameters other (Node) — the other instances to compare to
Returns True if equal, False otherwise

__getstate__ ()
Retrieve the state of the SourceNode

Returns the state of the object
Rtype dict

__init__ (datatype, id_=None)
Instantiation of the SourceNode.

Parameters

130 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

* datatype — The (id of) the datatype of the output.
e id - The url pattern.

This class should never be instantiated directly (unless you know what you are doing). Instead create
a source using the network class like shown in the usage example below.

usage example:

>>> import fastr

>>> network = fastr.Network ()

>>> source = network.create_source (datatype=fastr.typelist['ITKImageFile'],
— 1d_='sourceN')

__module___ = ‘fastr.core.node’

__ setstate__ (state)
Set the state of the SourceNode by the given state.

Parameters state (dict)— The state to populate the object with
Returns None
create_job (sample_id, sample_index, job_data, job_dependencies)

datatype
The datatype of the data this source supplies.

dimnames
Names of the dimensions in the SourceNode output. These will be reflected in the SampleldLists.

execute ()
Execute the source node and create the jobs that need to run

Returns list of jobs to run
Return type list of Jobs

output
Shorthand for self.outputs['output"']

outputsize
The size of output of this SourceNode

set_data (data, ids=None)
Set the data of this source node.

Parameters
e data (dict, OrderedDict or 1list of urls)-—the datato use
» ids —if data is a list, a list of accompanying ids
sourcegroup

valid
This does nothing. It only overloads the valid method of Node(). The original is intended to check if
the inputs are connected to some output. Since this class does not implement inputs, it is skipped.

objectmanager Module

This module contains the object manager class

class fastr.core.objectmanager.ObjectManager (path)

Bases: fastr.core.basemanager.BaseManager
Class for managing all the objects loaded in the fastr system

__abstractmethods___ =frozenset([’object_class’, ‘get_object_version’])

4.1. fastr Package 131

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict

FASTR Documentation, Release 1.1.2

__contains___ (key)
Check if an item is in the ObjectManager

Parameters key (str or tuple)-—objectid or tuple (Objectid, version)
Returns flag indicating the item is in the manager

__getitem__ (key)
Retrieve a Object from the ObjectManager. You can request by only an id, which results in the newest
version of the Object being returned, or request using both an id and a version.

Parameters key (str or tuple)-—objectid or tuple (Objectid, version)
Returns the requested Object
Raises FastrObjectUnknownError — if a non-existing Object was requested

__init__ (path)
Create a ObjectManager and scan path to search for Objects

Parameters path (str or iterable of str)- the path(s) to scan for Objects
Returns newly created ObjectManager

__keytransform__ (key)
Key transform, used for allowing indexing both by id-only and by (id, version)

Parameters key — key to transform
Returns key in form (id, version)
__module___ = ‘fastr.core.objectmanager’

get_object_version (obj)
Get the version of a given object

Parameters object — the object to use
Returns the version of the object

object_class
The class of the objects to populate the manager with

objectversions (0bj)
Return a list of available versions for the object

Parameters object — The object to check the versions for. Can be either a Object or a str.
Returns List of version objects. Returns None when the given object is not known.

todict ()
Return a dictionary version of the Manager

Returns manager as a dict

pluginmanager Module

This module contains the Manager class for Plugins in the fastr system

class fastr.core.pluginmanager .BasePluginManager (path=None, recursive=False)
Bases: fastr.core.basemanager.BaseManager

Baseclass for PluginManagers, need to override the self._plugin_class
__abstractmethods___ = frozenset([’plugin_class’])

__getitem _ (key)
Retrieve item from BaseManager

Parameters key - the key of the item to retrieve

132 Chapter 4. FASTR Developer Module reference

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#str

FASTR Documentation, Release 1.1.2

Returns the value indicated by the key
Raises FastrKeyError — if the key is not found in the BaseManager

__init__ (path=None, recursive=False)
Create a BasePluginManager and scan the give path for matching plugins

Parameters

* path (str)— path to scan

* recursive (bool) - flag to indicate a recursive search
Returns newly created plugin manager

Raises FastrTypeError —if self._plugin_class is set to a class not subclassing BasePlu-
gin
_ module__ = ‘fastr.core.pluginmanager’
load_plugin (plugin_key)

plugin_class
The class from which the plugins must be subclassed

populate ()
Populate the manager with the data. This is a method that will be called when the Managers data is
first accessed. This way we avoid doing expensive directory scans when the data is never requested.

class fastr.core.pluginmanager .LazyModule (name, parent, plugin_manager)
Bases: module

A module that allows content to be loaded lazily from plugins. It generally is (almost) empty and gets
(partially) populated when an attribute cannot be found. This allows lazy loading and plugins depending on
other plugins.

__getattr__ (item)
The getattr is called when getattribute does not return a value and is used as a fallback. In this case we
try to find the value normally and will trigger the plugin manager if it cannot be found.

Parameters item (st r) — attribute to retrieve

Returns the requested attribute

__init__ (name, parent, plugin_manager)
__module___ = ‘fastr.core.pluginmanager’
__repr__ ()

__weakref

list of weak references to the object (if defined)

class fastr.core.pluginmanager.PluginManager (path=None)
Bases: fastr.core.pluginmanager.BasePluginManager

__abstractmethods__ = frozenset([])
__init__ (path=None)
__module___ = ‘fastr.core.pluginmanager’

__setitem__ (key, value)
Store an ite